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Abstract

Auctions are a class of multi-party negotiation protocols.
Classical auctions try to maximize social welfare by select-
ing the highest bidder as the winner. If bidders are rational,
this ensures that the sum of profits for all bidders and the
seller is maximized. In all such auctions, however, only the
winner and the seller make any profit. We believe that “so-
cial welfare distribution” is a desired goal of any multi-party
protocol. In the context of auctions, this goal translates into
a rather radical proposal of profit sharing between all bidders
and the seller. We propose a Profit Sharing Auction (PSA)
where a part of the selling price paid by the winner is paid
back to the bidders. The obvious criticism of this mecha-
nism is the incentive for the seller to share its profit with non-
winning bidders. We claim that this loss can be compensated
by attracting more bidders to such an auction, resulting in an
associated increase in selling price. We run several sets of
experiments where equivalent items are concurrently sold at
a First Price Sealed Bid, a Vickrey, and a PSA auction. A
population of learning bidders repeatedly choose to go to one
of these auctions based on their valuation for the good being
auctioned and their learned estimates of profits from these
auctions. Results show that sellers make more or equivalent
profits by using PSA as compared to the classical auctions.
Additionally, PSA always attracts more bidders, which might
create auxiliary revenue streams, and a desirable lower vari-
ability in selling prices. Interestingly then, a rational seller
has the incentive to share profits and offer an auction like PSA
which maximizes and distributes social welfare.

Introduction
Designers of agent societies are interested in constructing
environments and interaction protocols that promote stable
systems serving all individuals. Characteristics of desir-
able outcomes of multi-party interactions include stability
and efficiency. Negotiation and coordination mechanisms
that produce desirable outcomes have therefore been exten-
sively studied in multiagent literature (Kraus 2001). General
multiagent interaction protocols typically address issues of
distribution of profits between all parties concerned. Other
researchers, e.g., in cooperative game theory (Eichberger
1993) use concepts like Shapley value to promote fair distri-
bution of profits between members of a group even though a
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number of other distributions, including some with no profit
for certain members, will maintain stability of the group1.

One particular class of such multi-party negotiation pro-
tocols, viz., auctions, have been used in a variety of mul-
tiagent domains to facilitate transactions of goods and re-
sources. Auctions have also received increased promi-
nence with the success of popular Internet sites like eBay,
uBid, etc. Multiagent researchers have both developed cus-
tomizable auction sites, e.g., eMediator (Sandholm 2000),
auctionBot (Wurman, Wellman, & Walsh 1998), etc., as
well as investigated new auction protocols (Parkes 2001;
Suyama & Yokoo 2004) and bidding strategies in differ-
ent auction settings (Greenwald & Boyan 2005; Stone et al.
2003).

The premise of this work is that one of the preferred goals
of any multi-party protocol is social welfare distribution.
More specifically, this dictates that if an interaction of many
entities create a profit or surplus in the system, that amount
should be distributed among the entities.

Given that auctions are a particular class of multi-party
interaction protocols, we can evaluate their effectiveness in
view of the criterion of social welfare distribution. Now, one
of the desired property accepted in auction theory is that of
social welfare maximization. Let r be the reservation price
of the seller of an item in any auction. Let B be the set
of bidders in the auction. If vh is the highest valuation for
the item among any bidder in the auction, then the maxi-
mum surplus that can be created by the interaction of the
seller and the bidders B is vh − r, assuming all bidder val-
uations are drawn from the same distribution. This social
welfare maximization is realized when the item is allocated
to the highest bidder, winner, at any selling price, p, such
that r ≤ p ≤ vh. This results in a profit of p − r for the
seller and vh − p for the winner with all non-winning bid-
ders receiving zero profit. The goal of social welfare distri-
bution, however, would suggest, rather radically, some profit
distribution among all bidders and the seller.

While a philosophical debate about the desirability of so-
cial welfare distribution is beyond the scope of this paper,
we briefly highlight two cases where such a distribution can
be rationalized without axiomatic claims of the desirability

1Some payoff vectors in the core of the game may have zero
payoff to some members.



of social welfare distribution:

• In the case of Vickrey’s auction, the bid of the second
highest bidder determines the selling price. Assuming
this bid is unique, in the absence of that bidder the sell-
ing price would have been less, resulting in less profit to
the auctioneer. One can then argue, using the analogy of
cooperative game theory, that the auctioneer should share
some of its profit with the second highest bidder.

• In a First Price Sealed Bid (FPSB) auction with N bid-
ders, and bidder valuations drawn from an uniform distri-
bution, the equilibrium strategy is to bid N−1

N
times ones

valuation. With more bidders in the auction, the winning
price, i.e., the sellers profit, increases. Here again, a case
can be made that non-winning bidders are contributing to
the profitability of the seller, and hence the total payoff
to the “coalition” of the seller and non-winning bidders
should be distributed, in some proportion, between them.

We propose a Profit Sharing Auction (PSA) where a part
of the seller’s profit is paid back to the bidders. Even if one
agrees with the philosophy of social welfare distribution,
there is still a more immediate and evident criticism of this
proposal: what is the incentive for the seller to share its profit
with the bidders? We posit that the loss from profit sharing
can be more than compensated by attracting more bidders to
such an auction, resulting in an associated increase in selling
price. Attracting more bidders can also open up new revenue
sources. While we do not delve into exploiting these addi-
tional income sources in this work, the pricing schemes in
most popular web portals such as Yahoo and Google con-
firms that more visitors can lead to more revenues through
auxiliary channels.

We empirically evaluate the claim of recouping loss from
profit sharing by gains from additional participation. We ex-
periment with a framework where where equivalent items
are concurrently sold at a First Price Sealed Bid, a Vick-
rey, and a PSA auction. A fixed population of learning bid-
ders repeatedly choose to go to one of these auctions based
on their valuation for the good being auctioned and their
learned estimates of profits from these auctions. We have
varied the parameters of the experiment including the num-
ber of bidders in the population. The major findings from
our experiments are as follows:

• For reasonable parameter values of the PSA auction, sell-
ers make more or equivalent profits by using PSA as com-
pared to the classical auctions. Thus sellers have the in-
centive, or at least have no disincentive, for offering PSA
as compared to the classical auctions.

• PSA always attracts more bidders, which might create
auxiliary revenue streams as suggested above.

• PSA delivers a lower variability in selling prices com-
pared to the classical auctions. Thus PSA provides a more
steady income stream for the seller which is desirable.

Interestingly then, we observe a win-win situation where a
rational seller has the incentive to share profits and offer an
auction like PSA which both maximizes and distributes so-
cial welfare.

Related work
Maximizing the seller’s expected payoff from an auction is
studied by a branch of auction theory known as optimal auc-
tion. The preferred approach is to show that the auction un-
der consideration has truth revelation as property or that the
seller revenue is equivalent to an auction where truth reveal-
ing is a dominant strategy. The assumption is that the seller
will make the highest profit when the buyers have no incen-
tive to speculate about other’s valuations or lie about their
own valuation of the item. Speculation, for example, can
produce underbidding, which can cause both reduction in
selling price, and at times, select someone other than the
bidder with highest valuation as the winner, thereby failing
to maximize social welfare.

The optimal auction literature dates back to the work of
Vickrey (Vickrey 1961). His revenue equivalence principle
implies that the four standard auctions: English ascending,
Dutch, Vickrey, and FPSB, provides the same expected rev-
enue to the seller. Only one of them, namely the second-
price auction or Vickrey auction, is truth revealing. This the-
orem is applicable to every settings where risk-neutral buy-
ers share the same probability distribution regarding their
private valuations, and the item is allocated to the buyer
with the highest valuation. Myerson (Myerson 1981) ex-
tends the theorem to the case where buyers do not share the
same valuation distributions but these distributions are com-
mon knowledge.

Sealed-bid auctions
We consider an auction environment with one seller and N
bidders. The seller wants to sell a single-unit item for which
it has a reserve price equals to r ≥ 0. We assume risk-
neutral bidders have a private valuation for the item inde-
pendently drawn from a common known cumulative distri-
bution F with derivative f = F ′ (symmetric model). Bids
are drawn from the range [v, v] where 0 ≤ v < v. In the
remainder of the paper, s will denote the seller and i the ith

bidder. When there will be no ambiguity vi and bi will de-
note respectively the valuation and the bid of the ith bidder.
We assume, without loss of generality, v1 ≥ v2 ≥ · · · ≥ vN .

Classical sealed-bid auctions
In classical sealed-bid auctions, each bidder sends its bid
to the auctioneer without access to bids from other bid-
ders. Two well-known sealed-bid auctions are the first-price
sealed-bid (FPSB) auction and the second-price sealed-bid
auction or Vickrey auction. The bidder with the highest bid
is chosen as the winner. The winner pays its own bid in
FPSB but only the second highest bid in the Vickrey auc-
tion. Rational bidders speculate and underbid in FPSB auc-
tion to obtain non-zero profit. It is proven the symmet-
ric equilibrium bidding strategy consists in bidding the ex-
pected second highest valuation. If Y

(N)
i

is the random
variable representing the highest valuation of all bidders but
i, then the equilibrium bid strategy, for valuation v, is to

bid β(v) = E
[

Y
(N)
i
|Y

(N)
i

< v
]

. Vickrey auction prevents

speculation since truth revelation is one of its properties.
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Figure 1: Possible outcomes in PSA.

Bidding one’s valuation is a dominant strategy in a Vickrey
auction.

Profit Sharing Auction (PSA)
We now introduce the Profit Sharing Auction where the
seller shares a portion of its profit with bidders. The auction
is a modified second-price sealed-bid auction. We assume
the seller has a sharing price threshold, M . It will return a
portion P of a part, M − r, of its profit to all bidders whose
bid is above M , where M > r. Qualified bidders, then, re-
ceive an extra profit of P ·(M−r)

NM

where NM is the number
of bidders whose bid was greater than or equal to M . In the
case where at most one bid is above M the outcome is iden-
tical to a Vickrey auction. Figure 1 shows the outcome of
the auction in different situations.

PSA properties
The following presents desirable properties of an auction
scheme (Jackson 2000):
Efficiency: The outcome of an auction is efficient when the
sum of the seller and every bidder’s utilities is maximized.
If truth revelation is a dominant strategy, the bidder with the
highest valuation wins the auction.
Individual rationality: Individuals weakly prefer partici-
pation in the auction to not participating, i.e., the expected
utility of the seller and every bidder is non-negative.
Budget balance: The payment made by bidders equals the
payment received by the seller.
Proposition 1 (Dominant strategy) Truth revealing is a
dominant strategy in PSA for a bidder with valuation greater
than M .

Proof: The proof is quite similar to the one for second-
price auction (Vickrey 1961). Additionally, the fact the win-
ner receives a part of the shared seller profit ensures that the
winner has the highest profit of all bidders. Consequently,
there is no reason to underbid to receive the shared profit
without winning the item. �

Proposition 2 (Equilibrium strategy) Bidding one’s valu-
ation when it is greater than M , and M otherwise, is an
equilibrium strategy if F (M)N ≤ P .

Condition 1 F (M)N ≤ P

Proof: Proposition 1 shows that an agent with a valuation
greater than M will bid its valuation. We now consider an
agent i with valuation below M . If all other agents bid as
described in Proposition 2, the expected utility of i is 0 if it
bids below M . If it bids M it gets the shared profit but takes
the risk of getting the item if all bids are equal to M . Its

expected utility of bidding M is P · (M−r)
N

+ F (M)N

N
· (vi−

M) >
(

P − F (M)N

)

· M−r

N
≥ 0, under Condition 1 and

vi > r. It cannot do better by bidding more than M . �

An agent with a valuation below M has two choices: (i)
bidding M to ensure the gain of the shared profit while tak-
ing the risk of getting the item at price above its valuation,
(ii) bidding its valuation and not qualifying for the shared
profit. Increase in the number of bidders in the auction has
two opposite effects: (-) it decreases the part of the shared
profit received by every agent, (+) it increases the probability
that at least two agents have their valuations above M . The
latter reduces the risk of the bidders who are overbidding,
i.e., those with valuation less than M . Condition 1 ensures
that the positive effect dominates the negative one.

Our auction does not have the truth revelation property,
as bidders with valuation below M overbid. This, however,
does not change the winner or the selling price if b2 ≥ M ,
i.e., at least two bidders have valuation ≥M . This is almost
always the case for a reasonably large N and an appropri-
ately chosen M .

Proposition 3 (Efficiency) PSA is efficient under the as-
sumption of risk-neutral bidders.

Proof: If p denotes the selling price (p = v2 or p = M ),
the seller utility is p− r−P · (M − r), the winner utility is
v1 − p + P · M−r

N
, the utility of other bidders is P · M−r

N
.

The sum of utilities is then v1 − r. �

Proposition 4 (Individual rationality) PSA is individually
rational under Condition 1.

Proof: The utility of the seller is always positive since
the item will never be sold at a price below r. Risk-neutral
agents will always bid their equilibrium strategy. Condi-
tion 1 ensures the shared profit will always be enough to
compensate the expected loss. �

Proposition 5 (Budget balance) PSA is budget balanced.

Proof: Payment by the winner is shared by the seller and
all bidders with bids M and above. �

Proposition 6 (Closing price) Expected closing price is

N(1−F (M))F N - 1(M)M+E
[

Y (N)|M ≤ Y (N)
]

+F (N)(M)M

where Y (N) is the random variable representing the second
highest bid under Condition 1.

Proof: PSA bidding strategy: βPSA(v) = max{v,M},
ex post (after knowing valuation) expected payment:

mPSA(v) =

∣

∣

∣

∣

1
N

F N - 1(M)M if v < M

F N - 1(M)M +
∫ v

M
(N − 1) v f(v)F N - 2(v)dv

,



ex ante (before knowing valuation) expected payment:

E[mPSA(v)] =

∫

v

v

m
PSA(v) f(v)dv

=
F N(M)

N
M + (1 − F (M)) F

N - 1(M) M +
∫

v̄

M

(
∫

v̄

x

f(v)dv

)

(N − 1)xf(x)F N - 2(x)dx

=
F N(M)

N
M + (1 − F (M)) F

N - 1(M) M +
∫

v̄

M
x (1 − F (x)) f

( N )
1 (x)dx,

where Y ( N )
1 is the random variable representing others’

highest bid with probability distribution f ( N )
1 .

Expected closing price:

E[RPSA] = N E[mPSA]

= F
N (M) M + N (1 − F (M)) F

N−1(M) M

+

∫

v̄

M

N x (1 − F (x)) f
(N)
1 (x)dx

= F
N (M) M + N (1 − F (M)) F

N−1(M) M +

E
[

Y
(N)|Y (N) ∈ [M, v̄]

]

�

The expected closing price corresponds to that of an
auction with reserve price M plus an extra payment of
FN (M) ·M . A PSA auctioneer can, then, use M to “simu-
late” a higher reservation price compared to the actual reser-
vation price, r. Also, the expression for the closing price is a
monotonically increasing function of N . Therefore, if more
bidders are attracted to PSA because of profit sharing, the
closing price, and hence the seller’s profit, will increase.

Proposition 7 (Asymptotic closing price) The closing
price of PSA tends to v in probability.

Proof: It is enough to show that the second highest bid
tends to v in probability. More precisely, we have to show
that ∀ε > 0, P

[

Y (N) ∈ [v − ε, v]
]

→ 1. It suffices to show
that PN , the probability that at least two bid is in [v − ε, v]
tends to 1. Now, PN = 1−

(

(F (v)−F (v−ε))N +(F (v)−

F (v − ε))N−1
)

. �

Simulation environment
We needed to evaluate our hypothesis that sellers may have
profit incentives of offering PSA auctions over FPSB or
Vickrey auctions. To do this we chose an environment with
N bidders and three auctions: an FPSB, a Vickrey auction
and a PSA. The three auctions repeatedly offer the same item
for sale with identical seller reservation prices. In each pe-
riod, each bidder chooses a valuation from a uniform dis-
tribution in the range [v, v] for the item being offered, and,
based on this valuation, chooses to bid in the auction which
is expected to return most profit. Agents bid their dominant
strategy in Vickrey and bid their equilibrium strategy in PSA
(we ensured that the condition F (M)N ≤ P is always sat-
isfied) and FPSB auction. We assume that the valuation dis-
tribution is common knowledge while the number of agents

participating in an auction is unknown since bids are sealed.
Thus, bidders in FPSB have to estimate this number. We
provide details of the estimation process later.

Bidders use Q-learning (Watkins & Dayan 1992) to es-
timate the utility of attending different auctions given their
valuation. The state is the agent’s valuation for the item.
As valuations are continuous, we discretized the valuation
range in K isometric intervals Ik = [V k−1, V k] where
v = V 0 < V 1 < · · · < V K = v. The action set is the set of
auctions, A. The profit, R, a bidder receives from the auc-
tion a ∈ A when its valuation was v is used to update the Q-
estimate as follows: Q(Ix(v), a)← (1−α)Q(Ix(v), a)+αR,
where 0 ≤ α < 1 is a learning parameter and Ix(v) is such
that v ∈ Ix(v). When choosing an auction, a bidder ran-
domly picks an auction with probability ε and with proba-
bility (1 − ε) it will choose the auction with the highest Q-
estimate for that valuation. This ε-greedy exploration policy
allows the bidder to continually search for more profitable
auctions.

To estimate the number of bidders in the FPSB auc-
tion, a bidder assumes other bidders have formed the
same Q-estimates as it has. On average, ε

3 · N bid-
ders will choose FPSB by exploration. If Q(Ik, F ) ≥
max{Q(Ik, V ), Q(Ik, P )} (where F V , and P denotes
FPSB, Vickrey and PSA respectively) then the bidder es-
timates (1− ε) · P [v ∈ Ik] ·N bidders with valuation in Ik

will come to FPSB by choice. Hence the number of agents
in the FPSB auction is estimated as
(

ε

3
+ (1− ε)

K
∑

k=1

δ
(

QF

k ≥ max{QV

k , QP

k }
)

P [v ∈ Ik]

)

N

where QA

k
= Q(Ik, A) and δ(cond) = 1 if cond = true

and 0 otherwise.

Experimental Results
We run simulations with following parameter values:N =
20 or 100, v = 0, v = 100, K = 10, r = 10, α = 0.3,
ε = .2, M = 25 or 75.

Auction attendance and valuations
Bidder percentages in the three auctions are plotted for
N=100, M=25 in Figure 2. In these and other experiments,
PSA consistently attracts significantly more bidders than the
other two auctions. This was expected since an agent al-
ways has a strictly positive utility for going to PSA unlike
other auctions. Note that with ε = 0.2 we expect on an aver-
age 6.67% percent of bidders in Vickrey and FPSB auctions
due to exploration only. As only a small number of bid-
ders learn to go to Vickrey and FPSB, winners in these auc-
tions, and particularly those with high valuations, are likely
to win with a high margin. Consequently, certain agents
learn that with a high valuation it is profitable to go Vick-
rey or FPSB. But if more high-valuation bidders are drawn
to Vickrey/FPSB, PSA becomes more profitable for the re-
maining high-valuation bidders. On closer investigation, we
find that any given bidder will periodically prefer each of the
three auctions when it has high valuations.
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To get an accurate measure of the preferred choice of the
bidders in each Ik, we plot their numbers in each of the auc-
tions over a run (see Figure 3). For another perspective, we
plot the valuation of the bidders in each of the three auctions
over the course of a run in Figure 4. The plots clearly show
that all bidders, except those with the highest valuation, pre-
fer PSA over the other auctions after only a few iterations. In
the highest valuation range, there are slightly more number
of bidders in PSA and FPSB over Vickrey.

Seller’s profit and selling prices

Now, we turn to the important metric of seller’s profit. In
Table we present the average cumulative profit obtained by
the sellers of each of the three auctions in different configu-
rations. The cumulative profit is calculated over 1000 itera-
tions. PSA provides better profits to the seller for reasonably
low values of M and small values of N . If we increase M
to 75, the seller profit in PSA drops below that of the other
auctions as the seller is giving away too much of its profit.
For N = 100 and M = 25, PSA and Vickrey provide almost
equal profit to the seller, and this is more than the profit from
FPSB. When increasing M the profit provided obviously de-
creases since the seller shares more. However, profits pro-
vided by other auctions follow the same trend. This is due

N M FPSB Vickrey PSA
20 25 53406.7 52644.6 63266.8
20 50 52044.8 49835.2 59576.5
20 75 51136.3 47928.8 58305

100 25 73889.5 81317.9 81475.1
100 50 73518.7 80350.4 76847.3
100 75 73371.5 79714.4 72111.6

Table 1: Average seller profits (P = .2).

to the fact that PSA becomes more appealing leaving less
incentive for bidders to go to Vickrey of FPSB.

In Figure 5 we plot the selling prices over the course of
a run when N=100, M=25. The sharp, periodic drops of
the selling price in Vickrey stands out in contrast to the
steady selling prices in the other two auctions. Thus, even
though, the cumulative profit in PSA and Vickrey is approx-
imately equal, PSA may be preferred by the seller because
of a steady revenue stream.

We now analyze these periodic price drops in Vickrey.
Apart from bidders choosing Vickrey while exploring, only
a few high-valuation bidders prefer it over other auctions.
Once in a while, all or most of these few high-valuation bid-
ders may choose to explore other auctions. If one or less
high-valuation bidders remained in Vickrey, and no other
high-valuation bidder preferring another auction came to
Vickrey by exploration, or vice versa, the selling price in
Vickrey will drop. These drops were more frequent and
more pronounced in the plots for N=20 (omitted for space
constraints). These periodic drops, due to exploration nec-
essary for learning, accounted for most of the seller profit
difference between Vickrey and PSA for those configura-
tions. For N=20, there are similar drops in the selling price
for FPSB and these drops are significantly less pronounced
for N=100. This is because as N increases, so does the base-
line and estimated attendance, x, in FPSB. With higher x,
the slope of the curve x−1

x
, the fraction of the true valuation

bid by bidders, decreases, and hence the bid variability is
smaller, i.e., selling price drops are not as sharp.

Conclusion
We proposed a new auction, Profit Sharing Auction, moti-
vated by the goal of social welfare distribution. A criticism
of such an auction is the lack of seller incentive for shar-
ing its profit. We hypothesized that the sharing of profit
will attract more bidders, thereby increasing the selling price
and compensating the seller for the loss from sharing prof-
its. We derived theoretical properties of PSA, including the
fact that it is efficient and individually rational. Though low-
valuation bidders have incentive to overbid, we argued that
this is not going to change the auction outcome if the profit
sharing threshold, M , is chosen such that at least two bid-
ders have higher valuations. We also showed that the clos-
ing price, and hence the seller’s profit, is a monotonically
increasing function of the number of bidders in the auction.

To evaluate the viability of PSA, particularly from the
seller’s perspective, we allowed a fixed population of bid-
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ders to repeatedly choose between a PSA, Vickrey, and First
Price Sealed Bid auction based on expected profits that is
learned over repeated periods. Results show that PSA al-
ways attract more bidders (possible revenue source not dis-
cussed here) and, for reasonable settings of M , generates
equal or more seller profits compared to the other auctions.
Additionally, there is less variability in selling price with
PSA. So, sellers have the incentive to offer PSA, which dis-
tributes welfare among a large number of bidders.

We need to evaluate the effect of many auctions of each
type in an environment on seller profits. In our experiments,
multiple bidders are learning simultaneously, and this pos-
sibly causes the high-valuation bidders to cycle between the
auctions. This phenomenon needs to be studied in depth.
We also need to derive formal guidelines for choosing PSA
parameters given environmental configurations.

Acknowledgments: This work has been supported in part
by an NSF award IIS-0209208.

References

Eichberger, J. 1993. Game Theory for Economists. Aca-
demic Press, Inc.

Greenwald, A., and Boyan, J. 2005. Bidding algorithms

for simultaneous auctions: A case study. AAMAS Journal
10(1):67–89.
Jackson, M. 2000. Mechanism theory. In Encyclopedia of
Life Support Systems.
Kraus, S. 2001. Strategic Negotiation in Multi-Agent En-
vironments. MIT Press.
Myerson, R. B. 1981. Optimal auction design. Mathemat-
ical Operations Research 6:58–73.
Parkes, D. C. 2001. Iterative Combinatorial Auctions:
Achieving Economic and Computational Efficiency. Ph.D.
Dissertation, University of Pennsylvania.
Sandholm, T. 2000. emediator: a next generation elec-
tronic commerce server. In Proc. AGENTS’00, 341–348.
Stone, P.; Schapire, R. E.; Littman, M. L.; Csirik, J. A.; and
McAllester, D. 2003. Decision-theoretic bidding based on
learned density models in simultaneous, interacting auc-
tions. JAIR 19:209–242.
Suyama, T., and Yokoo, M. 2004. Strategy/false-name
proof protocols for combinatorial multi-attribute procure-
ment auction. In Proc. AAMAS’04, 160–167.
Vickrey, W. 1961. Counterspeculation, Auctions and Com-
petitive Sealed Tenders. Journal of Finance 8–37.
Watkins, C. J. C. H., and Dayan, P. D. 1992. Q-learning.
Machine Learning 3:279 – 292.
Wurman, P. R.; Wellman, M. P.; and Walsh, W. E. 1998.
The Michigan Internet AuctionBot: A configurable auc-
tion server for human and software agents. In Proc.
AGENTS’98, 301–308.


