Distributed Intrusion Detection in Partially Observable
Markov Decision Processes

Doran Chakraborty
doran@utulsa.edu

Sandip Sen
sandip@utulsa.edu

Mathematical & Computer Sciences Department
University of Tulsa
Tulsa, Oklahoma, USA

1. ABSTRACT

The problem of decentralized control occurs frequently in
realistic domains where agents have to cooperate to achieve
a universal goal. Planning for domain-level joint strategy
takes into account the uncertainty of the underlying en-
vironment in computing near-optimal joint-strategies that
can handle the intrinsic domain uncertainty. However, un-
certainty related to agents deviating from the recommended
joint-policy is not taken into consideration. We focus on
hostile domains, where the goal is to quickly identify devi-
ations from planned behavior by any compromised agents.
There is a growing need to develop techniques that enable
the system to recognize and recover from such deviations.
We discuss the problem from the intruder’s perspective and
then present a distributed intrusion detection scheme that
can detect a particular type of attack.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms

Algorithms, Performance

Keywords

fault tolerance, multiagent planning

2. INTRODUCTION

The problem of decentralized control can be effectively
modeled as a decentralized partially observable Markov De-
cision Process (DEC-POMDP) [1] where the agents in the
model are the decision makers. The uncertainty related to
each agent’s action does not only span over the uncertainty
of the underlying environment but also on the decision mak-
ing of the other agents in the system. In hostile domains,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AAMAS 07 May 14-18 2007, Honolulu, Hawai’i, USA.

Copyright 2007 IFAAMAS .

malfunctioning of the agents due to internal failure or even
due to enemy intrusion cannot be discounted. There is a
growing need to develop multiagent systems that can ad-
dress such situations and can efficiently compensate for such
setbacks. We analyze the problem from the perspective of
the malicious agent and come up with one possible attack
that it can launch on the system. We then use decision the-
oretic paradigms to obtain a solution to such attacks and
propose reputation update schemes that distributively iden-
tify such malicious agents. We substantiate our claims with
results from the popular multiagent tiger domain [2].

3. DEC-POMDP MODEL

A DEC-POMDP is given by a tuple < I, S,{A4;},{%}, 0,
P,R,bp > where [is the finite set of agents indexed by
1...n, S is a finite set of states, A; is a finite set of actions
available to agent i and A = X;e1A; is the set of joint actions
where a =< ai,...,a, > denotes a joint action, £2; is a finite
set of observations available to agent i and 2 = X ;¢1§2; is the
set of joint observations where o =< 01,...,0, > denotes
a joint observation, O is the observation function given by
O(s,a1,...,an,01,...,0r), the probability of observing the
joint observation (01, ceey on) when transitioning to state s
after taking joint action (a1,...,an), P is the set of Marko-
vian state transition probabilities where P(s,a,s’) denotes
the probability of taking action a in state s and reaching
state s’, R: S x A — R is the common reward function, and
bo is the initial belief state for all agents. We assume that
the agent’s observations are independent. Thus the obser-
vation function can be represented as O = X;c;0; where
O;(s,a1,...,an,0;) is the probability that agent ¢ observes
o; given the joint-action < ai,...,a, > resulted in state s.
The decision problem spans over a finite horizon 7.

4. POLICY REPRESENTATION AND RUN-
NING BELIEF STATE

The policy for agent 4, 7; is represented by a policy tree
(see Figure 1). Each node corresponds to an action and each
edge corresponds to an observation that the agent makes at
that time interval. We assume that there is a centralized
planner that computes the policy tree for each agent. We
introduce the concept of running belief state of an agent
as an execution time estimate of an agent over the physical
states and the observation histories of the other agents in the
system. The running belief state of agent i at time interval

t is given by RB} : S x otji — [0, 1] where o . are the t’th

—1

observation histories of other agents. We define Bel! as the
set of all such possible combinations of physical states and
observation histories that have a positive probability in RBY.
Thus Bel! can be defined as Bel! = {b|RB!(b) > 0}.

4.1 Running Belief State Update

The agents update RB! and Bel! with each execution
step. The update occurs in two phases. The first exhaustive
phase calculates RBt+1 based on the observation ot+1 from

Bel!. We call this estimate the priori estimate, RBfZOl”.

RBIT(< 8o >) =ax Y
<s,ot:i>EBelf
>,8) X Oi(s', < mi(ol), m_i(of,) >,

—1

£ >0 (1)

P(s, < mi(2) W—i(OEi)
o) x O_i(s', < miloh), m_i(of
where o1 is a normalizing constant and s, s’ € S. Bel?}/]"
is calculated accordingly. The second phase of the update
happens after the agent takes its ¢+1’th step action and
obtains joint reward given by the random variable R**!. The

S t
agent can now calculate the posteriori estimate RB}' 75"} riori

RS (< 001 >) = ao x R (< oo) x

Pr(R" =7r|R, s, < 7ri(0§+1),7r_i(ot+-1) >) (2)

—1

where aq is another normalizing constant and r is the re-
ward received at the t+1’th time step. The second probabil-
ity term in Equation 2 returns a value of 1 or 0 depending
on whether it is possible to get the reward r after taking

joint action < (o t+1)7ﬂ,i(ott1) > at state s’. We then

set RBz‘fo”O” to RB!™' and Bel!™" is updated accord-
ingly. Agent i knows its own physical state and using RB}
and Bel!, it tries to approximately estimate the state of all
j,j € I,j # i. It can be shown that Bel! is always an
over-estimate of the actual world state.

4.2 Anticipated set of rewards

Based on Belfgio”, an agent ¢ maintains a set 1! which
is a set of all possibles rewards that it can get by taking the
action given by m; at time t. The anticipated set of rewards

Nt at time t is ¢ = {R(s, < mi(o) T (o{l) >)|(s, o, ;) €
Be lp”"”} Note that the agent has to use the Belp”o”
estimate as the anticipated rewards are calculated before
the #'th action has been taken. If an agent ¢ receives a
reward r ¢ n! at time ¢, it concludes that some agent(s)
have deviated from their committed policies.

We assume that there can be compromised agents in the
system which want to have a covert harmful impact on the
system. A malicious agent k can only avoid suspicion if
it takes actions which are consistent with the anticipated
reward estimates of other agents. The moment k takes an
action that produces a joint reward r ¢ n! for some i, i knows
that some agent(s) must have deviated from the committed
joint policy. k can choose from the set of actions available
with the different observations for the particular node of
policy tree it is in and thereby avoid detection. We refer to
such agents as simple malicious agents. In Figure 1, if k is
at branch bl of 7 at time ¢/, it chooses between the actions
a1 and a2 pertaining to observations o1 and o2 respectively.

RB}(< s,ot:i >)x

=0
ol 02
, #al e @2
t=t ™ ‘982
ol b <72 ol 02
al
a2 a3 a4

Figure 1: Policy tree.

k has no incentive to choose an action from another node at
the same level of the policy tree (b2) as it cannot guarantee
that the joint reward received would be a member of 0!, Vi,
i # k. We refer to such agents as simple malicious agents. A
simple malicious agent can be deterministic if it always takes
the action corresponding to the least probable observation
of the subtree of the policy tree it is in or stochastic if it
takes any action corresponding to the observations of the
subtree with equal probability.

4.3 Reputation management

To identify deviation from committed plans from com-
promised agents, each agent maintains updated reputation
about all other agents in the system. This reputation man-
agement scheme runs in all agents in completely distributed
fashion. Each agent ¢ maintains a set V; = {R’} where R}
is the reputation of the jth agent as computed by agent i,
Vj # i, and is updated in each iteration by:

R} — R! — k(R])x

Z (mazo en;0;(s, < mi(o; = 1),71'71'(01___;1) >,05))—

V<s,ot >EBel1maT

1) T— l(
where Bel{""" = {b|RB}(b) = mazy c ot RB(V)}. Bel!
t7naz

is a subset of beliefs most convincing to i. Based on Bel; |
i tries to reason the last observational transition that each
of the other agents have made. The numerator of the sec-
ond expression in Equation 3 gives the difference between
the probability of observing the most probable observation
given t-1’th joint-action with the probability of observing
the t’th observation given the same. Note, a simple mali-
cious agent k£ would often fake observations and this incon-
sistency would gradually reflect in the Bel! of i and result
in a higher value for the numerator. This would result in a
sharp drop of R¥. The function is monotonically decreas-
ing with R} and thus facilitates faster detection.

max
t

0;(s, < mi(o; 1) >, 05 >))/|Bell™ | ®3)

5. RESULTS

For our experiments we use a three agent version of the
Tiger problem [2] and refer to the agents as Agentl, Agent2
and Agent3. The observation function for each agent is gen-
erated randomly over each pass of the run. We assume do-
mains, where probability of one observation given a state
and joint-action is significantly higher than the other obser-
vations. All results presented are averaged over ten runs.

gmax

Reputation Plot
Agent2 @
14 D Agent 3 ¥
L R
.
v, @.
L @
08 v e e
- .
o - Qg
S o6l A
] X
5 .
g
4

04

02

. . . .
0 2 4 6 8 10
Horizon

Figure 2: Agent3 deterministically takes actions cor-
responding to wrong observation.

The initial policies for each agent is generated randomly for
each iteration. We do without calculating the optimal joint
policy as the reputation mechanism works well for any com-
mitted joint policy. The results presented are based on the
calculations made by Agentl.

In the first simulation, Agent3 is a deterministic simple
malicious agent whereas Agent2 takes actions based on its
true observations. Figure 2 shows the individual reputation
plots of the two agents in the system. The drop in reputa-
tion for Agent2 is due to the domain effect but the much
steeper drop for Agent3 is far from the normal drop due to
the domain level uncertainties. In the next simulation, we
changed Agent3 to a deterministic simple malicious agent.
Figure 3 shows the corresponding reputation plots and we
see that the reputation of both the agents show a sharp fall.

In the next set of experiments, in an attempt to avoid de-
tection, the simple malicious agents stochastically chooses
the action pertaining to the wrong observation. Again in the
first case we assume that Agent3 is the only malicious agent
in the system. Figure 4 is the reputation plot for the cor-
responding case. The steeper drop in the reputation value
for Agent3 clearly identifies that Agent3 have been taking
more actions pertaining to wrong observations. So Agentl
can conclude that either the agent has faulty observational
sensors or it has been corrupted by external influence. In
the next simulation, both Agent2 and Agent3 behave as ma-
licious agents that stochastically take actions corresponding
to the wrong observation. Figure 5 shows the correspond-
ing reputation plot of the two agents. The sharp dip in the
reputation of the two agents signify an abnormality in the
expected behavior of the agents.

6. CONCLUSION AND FUTURE WORK

In this paper we dealt with the problem of detecting agents
that deviate from committed joint-policy. Assuming that
the agents can be compromised, we discussed one possible
type of deviations from prior commitments. We presented
a distributed reputation update mechanism of uniquely de-
tecting such malicious agents. Our scheme is based on track-
ing of the execution time estimates of the belief state of the
system and the anticipated rewards. As future work we
would also like to explore more challenging scenarios deal-
ing with malicious agents such as colluding agents that try
to compromise the system.

Acknowledgment: US National Science Foundation award

IIS- 0209208 partially supported this work.

Reputation Plot

Agent2 —@
1@ Agent3 w4
.
®.
.
08 R
v
R
S L
g osf o P
= v.
- .
04| LSS
.
02 1
y
K

Horizon

Figure 3: Both agent2 and agent3 deterministically
takes actions corresponding to wrong observation.

Reputation Plot
Agent2 @
19 Agent3 -y
L@@
T -
°-.
. @
08l Qg
A R

< ¥ @
5
g 06f e q
z T
4 v

04 .

v
¥
02 Y
0
0 2 4 6 8 10

Horizon

Figure 4: Agent3 stochastically takes actions corre-
sponding to wrong observation.

Reputation Plot
Agent2 @
19 Agent3 —w—
Q- TV
08 @
o
L S
s N
s 06r L
5 .
3 ?
i3
04 . |
v
I 4
02 4
@
0 L L L
0 2 4 6 8 10

Horizon

Figure 5: Both Agent2 and Agent3 stochastically
take actions corresponding to wrong observation.

7. REFERENCES

[1] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of markov decision processes. Math. Oper. Res.,
27(4):819-840, 2002.

[2] R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and
S. Marsella. Taming decentralized pomdps: Towards
efficient policy computation for multiagent settings. In
Proceedings of the Fighteenth International Joint
conference on Artificial Intelligence (IJCAI), 2003.

