
Multi-Dimensional Bid Improvement Algorithm for Simultaneous Auctions

Teddy Candale and Sandip Sen

University of Tulsa, USA

{tdi,sandip}@utulsa.edu

Abstract

Bidding for multi-items in simultaneous auctions
raises challenging problems. In multi-auction set-
tings, the determination of optimal bids by potential
buyers requires combinatorial calculations. While
an optimal bidding strategy is known when bidding
in sequential auctions, only suboptimal strategies
are available when bidding for items being sold
in simultaneous auctions. We investigate a multi-
dimensional bid improvement scheme, motivated
by optimization techniques, to derive optimal bids
for item bundles in simultaneous auctions. Given a
vector of initial bids, the proposed scheme system-
atically improves bids for each item. Such multi-
dimensional improvements result in locally optimal
bid vectors. Globally optimal bid vectors are guar-
anteed in the limit for infinite restarts. For ease of
presentation we use two-item scenarios to explain
the working of the algorithm. Experimental results
show polynomial complexity of variants of this al-
gorithm under different types of bidder valuations
for item bundles.

1 Introduction

Auction theory has received significant attention from agent
researchers following the development of electronic auctions
on the Internet. Numerous sites like eBay, uBid offer differ-
ent types of auctions to facilitate the trading of goods. Also
sites like eMediator implements a large variety of combinato-
rial auctions and exchanges [Sandholm, 2000]. Researchers
are interested both in designing auctions with desirable prop-
erties [Parkes, 2001; Sen et al., 2005] and developing auto-
mated agents to represent interests of human users [Green-
wald and Stone, 2001; Greenwald and Boyan, 2004; 2005;
Stone et al., 2003; Stone and Greenwald, 2005].

The problem of computing optimal bids is complex when
bidding for multiple items. The valuation function of a poten-
tial buyer expresses the maximum amount it is willing to pay
to acquire each bundle of items. Two settings are generally
studied: combinatorial auction and multi-auction. A combi-
natorial auction offers multiple items. Bidders can submit the
amount they are willing to pay to get bundles. In strategy-
proof combinatorial auction settings, a rational bidder bids

according to its true preferences and the auctioneer incurs the
computational cost of optimal bundle allocation based on bids
submitted. The winner determination problem for combina-
torial auction is NP-Hard. This complexity may discourage
certain sellers. Besides, an individual may not find all desired
items in the same combinatorial auction.

In a multi-auction setting, multiple single-item auctions are
held concurrently or sequentially. A potential bidder needs to
estimate closing prices of such auctions to compute optimal
bids. In contrast to combinatorial auctions, in multi-auction
settings, a bidder incurs the computational cost of calculating
optimal bids given its valuation for items and the expected
closing prices. As in a single-auction setting, auctioneer in
each of these multiple, independent auctions have a straight-
forward computational task of selecting a winner from bids
submitted to a single auction.

In multi-auction settings, auctions can be sequential or si-
multaneous. Sequential auctions close at a predetermined
known order. A bidder can bid in the auction that will close
next and then wait for the outcome before computing its next
bid. Optimal bidding policies have been developed for se-
quential auctions [Stone et al., 2003; Greenwald and Boyan,
2004; 2005]. Simultaneous auctions, however, run concur-
rently and bidders do not know in advance their precise clos-
ing times. Bids to be submitted to all auctions have to be com-
puted at the same time. Developing efficient optimal policies
for simultaneous auctions is an open research problem.

We propose a novel bidding algorithm for simultaneous
auctions motivated by optimization techniques. We sequen-
tially improve components of the current bid vector to maxi-
mize the bidder’s expected utility given the closing price dis-
tributions of the auctions. We reason with continuous closing
price distributions which allows us to address a more general
setting and enables the application of powerful methods tai-
lored for continuous spaces. Our technique can be adapted
to find optimal bids given discrete closing price distributions.
We graphically illustrate the working of our bid improvement
scheme. We then experimentally evaluate variants of our al-
gorithm for different problem sizes and under substitutable,
complementary, and unrelated item preferences. Our main
theoretical result is that our proposed bidding scheme is op-
timal given infinite number of random restarts. Experimental
results demonstrate that effective approximations to optimal
results can be produced in polynomial time.

IJCAI-07
1215

2 Related work

Combinatorial auctions can be designed to provide desirable
social outcomes [Parkes, 2001; Sandholm, 2002]. However,
it is not feasible to have a combinational auction which offers
all items an individual may desire. This may be due to new
needs that no seller has foreseen. Besides, items which are
not directly related are unlikely to be found in the same auc-
tion. For example, a car company which wants to design a car
with an on-board computer is unlikely to find pieces needed
to build the engine in the auction it can find components to
build the on-board computer.

Stone, Greenwald, and fellow researchers investigated the
bundle bidding problem for multi-auctions in the context
of the Trading Agent Competition (TAC) [Greenwald and
Boyan, 2004; 2003; Stone et al., 2003; Stone and Green-
wald, 2005]. They assign valuations to individual items that
correspond to expected marginal utilities of the items. The
marginal utility of an item i is the extra-profit generated by
the acquisition of i at zero price, and corresponds to the
amount one is willing to pay for an item calculated as the ex-
tra benefit of getting it. Stone et al. approximated it by price
sampling for sequential auctions since the exact calculation is
of exponential complexity [Stone et al., 2003].

Though Stone et al. presented the marginal utility based
bidding scheme, MU , in the context of sequential auctions,
they used it for simultaneous auctions [Stone et al., 2003].
Greenwald and Boyan [Greenwald and Boyan, 2004] showed
that MU is optimal for sequential auctions but can be sub-
optimal for simultaneous auctions. Greenwald and Boyan
proposed a variant of MU , expected marginal utility bidding
(EVMU), for bidding in simultaneous auctions where the bid-
der first computes an optimal set of items to bid for. It is the
bundle with the best profit assuming actual closing prices in
future auctions are equal to the expected closing prices. Af-
ter determining the optimal bundle, the bidder bids expected
marginal utility for each item in the bundle. Greenwald and
Boyan proved that this method is optimal when prices are
deterministic [Greenwald and Boyan, 2004]. This method,
however, is still suboptimal in general. A downside of each
of these methods is their exponential computational complex-
ity as calculating the marginal utility of one item required the
knowledge of the expected profit generated by the acquisition
of each possible bundle.

Byde et al. [Byde et al., 2002] present a heuristic approach
to bidding in sequential and simultaneous auctions. Their ap-
proach does not have any theoretical guarantees of expected
utility and cannot be implemented as presented in the paper
as necessary heuristics are not included.

3 Multi-auction Model

We consider multiple sealed-bid auctions offering items from
the set I. A valuation function ϑ expresses the bidder’s pref-
erences for bundles or subsets of items from the set I, i.e.,
the bidder is willing to pay up to ϑ(I) for a bundle of items
I ⊆ I. Each item i is available only in the single-item single-
unit auction ai. We do not specify the particular auction type
but make the exogenous price assumption: the bids of our
bidder do not influence the auction closing prices. An auc-

tion is modeled by the probability distribution Fi of the clos-
ing prices of the item being offered in that particular auction.
We assume these distributions to be continuous, independent,
and known by the bidder [Greenwald and Boyan, 2004; 2003;
Stone et al., 2003; Stone and Greenwald, 2005]. In practice
approximate price distributions can be learned from observ-
ing electronic markets. When an auction closes, a closing
price pi ∈ [pi, pi] is drawn from the distribution Fi. The bid-
der gets the item if it has placed a bid bi greater than or equal
to the closing price, i.e., if pi ≤ bi, and the winning payment
is equal to the closing price pi. All auctions run in parallel
and their closing times are not known by the bidder. The bid-
der place bids represented by B = (b1, . . . , bN) ∈ B where
B is the bid domain for all auctions. Replacing a bid is not
allowed in this model.

Once all the auctions close, the bidder can compute its util-
ity α(B, P) where P = (p1, . . . , pN) represents the closing
prices of all auctions. The set of acquired items Iac(B, P) is
calculated as

Iac(B, P) = {i ∈ I s.t. pi ≤ bi}

and the corresponding utility received by the bidder is

α(B, P) = ϑ(Iac(B, P))−
∑

i∈Iac(B, P)

pi.

The expected utility is then ᾱ(B) = EP [α(B, P)] which can
be calculated as specified in Proposition 1:

Proposition 1 (Expected utility)

ᾱ(B) =
∑
I⊆I

⎧⎨
⎩
(∏

i∈I

Fi(bi)

)⎛
⎝∏

j /∈I

(1− Fj(bj))

⎞
⎠ϑ(I)

⎫⎬
⎭

−
N∑

i=1

∫ bi

pi

pi fi(pi) dpi,

where Fi(bi) = Pr{pi ≤ bi} =
∫ bi

pi

fi(pi) dpi and fi is the

pdf of Fi. Our research objective is to find a bid vector B∗

which maximizes the expected utility ᾱ: B∗ = argmax
B∈B

ᾱ(B).

4 Multi-Dimensional Bid Improvement

Our proposal uses an optimization technique to find opti-
mal bids for sequential auctions. Assume that the bidder
has decided by some means to bid the vector B. Is it pos-
sible to do better than bidding B, i.e., is there a bid vector
B′ such that ᾱ(B′) > ᾱ(B)? Assuming B is sub-optimal,
there is at least one item whose bid can be improved, i.e.,
there exist i and δi such that ᾱ(B) < ᾱ((bi + δi) ∨ B−i)
where B−i = (b1, . . . , bi−1, bi+1, . . . , bN) and b′i ∨B−i =
(b1, . . . , bi−1, b′i, bi+1, . . . , bN). By repeating this process,
we can realize the best improvement possible for the item
i, which is equivalent to maximizing the function bi �→
ᾱ(bi ∨B−i). The following formalizes the idea.

Definition 1 (Optimal bid for item i) βi(B−i) is the opti-
mal bid for item i given bids for item j �= i is fixed:
βi(B−i) = argmax

bi∈[pi, pi]

ᾱ(bi ∨B−i).

IJCAI-07
1216

Proposition 2 (Optimal bid for item i)

βi(B−i) =
∑
I ⊆ I

i ∈ I

∏
j ∈ I
j �= i

Fj(bj)
∏
l/∈I

(1− Fl(bl))ϑ(I)

−
∑

J ⊆ I

i /∈ J

∏
j∈J

Fj(bj)
∏
l /∈ J
l �= i

(1 − Fl(bl))ϑ(J)

Sketch of proof
Space constraints preclude the presentation of the full
proof. We note, however, that βi(B−i) is such that
∂ᾱ

∂bi
(βi(B−i) ∨B−i) = 0. Besides, let consider ᾱi : bi �→

ᾱ(bi ∨B−i). We can show that{
0 < ᾱ′

i(bi) if βi(B−i) > bi

0 = ᾱ′
i(bi) if βi(B−i) = bi

0 > ᾱ′
i(bi) if βi(B−i) < bi

where ᾱ′
i =

d ᾱi

d bi
=

∂ᾱ

∂bi

Consequently,

ᾱi is increasing when βi(B−i) > bi.

ᾱi is decreasing when βi(B−i) < bi.

bi = βi(B−i) is the unique local maximum, and thus
the unique global maximum.

�

4.1 Best bid hyper-surfaces

The equation bi = β(B−i) defines a hyper-surface in the N -
dimension space B1. This hyper-surface divides B into two
zones: one zone where, given a point B, bi has to be in-
creased to increase ᾱ, and the other zone where bi has to be
decreased to improve ᾱ. Hence, the ith component of the
gradient is always directed to the hyper-surface bi = β(B−i)
and is equal to zero on the surface. An intersection of the N
hyper-surfaces, one for each item, defines a bid vector whose
gradient is equal to zero (when this intersection is inside the
bid domain). This point, though a potential candidate, is not
necessarily a local maximum since a gradient equal to zero
does not guarantee the existence of a local optimum. Optimal
bids can be found at the intersection of the N hyper-surfaces
either inside the bid domain or at the boundary of the bid do-
main. The optimum can then be discovered by sequentially
moving from one hyper-surface to another until no further
improvements can be made.

We now outline our bid selection scheme. An initial bid
vector B is chosen. Then, we repeatedly improve the N com-
ponents of the bid vector B in any predetermined order. Im-
proving the bid for item i involves replacing bi by βi(B−i):
B ← βi(B−i) ∨ B−i. We will refer to this improvement
as single improvement and the sequence of N improvements

1bi = β(B−i) is a curve when N = 2, a surface when N = 3.

as N -sequential improvement. In the bid domain B, the sin-
gle improvement can be regarded as going from B to the
hyper-surface bi = β(B−i) by moving parallel to the bi-axes.
The process is stopped when no further improvement can be
made. We refer to this sequential bid-improvement process
as a Multi-Dimensional Bid Improvement (MDBI) scheme.

Figures 1, 2, and 3 provide a visual description of the above
discussion. Each figure represents the bid domain B where
N = 2 and hence we draw the two hyper-surfaces. We
chose uniform probability distributions to represent the clos-
ing price distributions as a result of which the hyper-surfaces
are lines. Arrows give the direction to follow to improve the
expected utility in the zones delimited by the hyper-surfaces.
Paths leading to local maxima are drawn as dashed lines with
arrows representing the direction to follow.

Figures 1, 2, and 3 allow us to present some conclusions.
For all types of item valuations, it is preferable to bid the in-
dividual valuation of an item when bidding only for this item.
For substitutable items, βi is decreasing and the maximum
value taken by βi is βi(pi) = vi where vi = ϑ({i}), and
the bidder should always bid less than its individual valuation
for each item when bidding for a bundle. On the contrary,
for complementary items, βi is increasing and the minimum
value taken by βi is βi(pi) = vi, and the bid for an item
should always be more than the individual valuation for that
item when bidding for an item bundle.

In the examples presented in these figures, we have unique
optima. Given the nature of the closing price distributions,
however, the N hyper-surfaces may have several intersections
resulting in as many local optima. Consequently, we can only
guarantee reaching a local maxima using the N -sequential
MDBI process. This problem can be circumvented by restart-
ing the improvement process, e.g., by choosing a random bid
vector, when no further improvement is possible. Assuming
an infinite number of restarts, this method will discover the
optimal bid vector. As this is not feasible in practice, only a
finite number of restarts can be considered.

We observe that for non-related items, and irrespective of
the number of items, there exists a unique optimum. Indeed,
in that case, βi(bi) = vi. Consequently, the N hyper-surfaces
are orthogonal (see Figure 3) and therefore have a unique

intersection B̂ = (v1, . . . , vN) which corresponds to B∗.
Starting from any bid vector, we will arrive at this solution
using the MDBI scheme. As a result, the MDBI process will
output the optimal bid vector irrespective of of initial bids
when items are non-related.

4.2 Bidding Algorithm

We now describe the steps of our bid improvement algorithm
in more detail. An initial bid vector B0 is chosen. Let Bt

be the bid after t iterations. Bt+1 is obtained by improving
sequentially bids for each of the N items in Bt, keeping the
bids for other items constant. The process is stopped when
||Bt+1 −Bt|| < ε where ε is a user-chosen positive constant
and || · || is any vectorial norm. To improve a bid, we need to
calculate βi. Though the formula presented in Proposition 2
requires exponential computation, it is possible to approxi-
mate βi in polynomial time via price sampling. Algorithm 1

IJCAI-07
1217

]

v2

v1

grad0

1β
1
(p1)

2β (
1

p)2

b1 b2= β()1

b2 b1)=β(2

B

Figure 1: Hyper-surfaces when N = 2, closing price distri-
butions are uniform, and items are substitutable.

v2

b1 b2= β()1

b2 b1)=β(2

v1

grad0

B

Figure 2: Hyper-surfaces when N = 2, closing price distri-
butions are uniform, and items are complementary.

b1 b2= β()1

b2 b1)=β(2

p
1

p
2

v1

v2

B

Figure 3: Hyper-surfaces when N = 2, closing price distri-
butions are uniform, and items are non-related.

presents the pseudo-code to approximate βi. Algorithm 2
presents the pseudo-code for the MDBI algorithm.

Algorithm 1 Approximation of βi(B−i) by price sampling

β ← 0
for k = 1..K do

P ← generatePriceSamples(F1, . . . , FN)
β ← β+

(
ϑ (Iac(pi ∨B−i, P))− ϑ

(
Iac(pi ∨B−i, P)

))
end for

return
β

K

Algorithm 2 MDBI

B ← initializeBids()
// Improvement loop.
repeat

B′ = B
for i = 1..N do

bi ← βapprox(i, B−i, F, ϑ, K)
end for

until ||B −B′|| < ε
return B

The computational complexity of approximating βi(B−i),
βapprox(i, B−i, F, ϑ, K), is linear given the number of sam-
ples, K . More precisely, it is equal to θ(K) additions, θ(K)
valuation calculations and θ(K) price sample generations. In
MDBI, each N -sequential improvement requires N approx-
imations of βi(B−i). The number of N -sequential improve-
ment depends on the number of iterations of the improvement
loop, C(ε, N). We have (C(ε, N) ∗ N) N -sequential im-
provement and C(ε, N) calculations of norms. Generally,
vectorial norms can be computed in linear time given the di-
mension of the space (N in our case). Thus, the complexity
of MDBI is O(K N C(ε, N)) additions, O(K N C(ε, N))
valuation calculations and O(K N C(ε, N)) price sample
generations. The value of C(ε, N) is difficult to judge a
priori but experimental results presented in the next section
show that C(ε, N) increases only very gradually with N
and thus the computational complexity of MDBI is approx-
imately linear. This, in particular, is a significant improve-
ment over current schemes [Greenwald and Boyan, 2004;
Stone et al., 2003] which have exponential complexity.

5 Experimental results

We ran experiments with the following objectives: to show
that our algorithm performs well when probability distribu-
tions are discrete2, both in terms of the quality of the solution
provided and the time efficiency3. We compare variants of

2Our study was made assuming continuous distributions. In real-
life environments, agents are likely to use discrete probability distri-
butions.

3Though we provide formal analysis of the complexity of our
algorithm, the expression of MDBI complexity contains a function
(C(ε, N)) whose value is unknown. The goal of our experiments is
to see whether C(ε, N) scales minimally with N .

IJCAI-07
1218

our algorithms with an exhaustive search or brute force algo-
rithm (BF) that provides optimal results at high search costs.
The BF approach consists of calculating the expected profit
generated by each possible bid combinations and then bid-
ding the best combination. BF is optimal, but its complexity
is exponential. We now present three variants of our MDBI
algorithm that we have experimented with:

Random Start Bid Improver (RSMDBI): RSMDBI starts
with a randomly chosen bid vector and does not use
restarts.

Random Start Bid Improver With Restart (RSMDBIWRn):
RSMDBIWRn starts with a randomly chosen bid vector
and restarts the hill-climbing process n − 1 times and
outputs the bid vector with the highest expected utility.

Valuation Start Bid Improver (VSMDBI): VSMDBI
starts with the bid Bϑ1 = (v1, . . . , vN) and does not
use restarts.

5.1 Experimental settings

In the first set of experiments, we used the above-mentioned
variants of the MDBI algorithm in an environment containing
four single-item single-unit auctions and the focus is on eval-
uating their success in finding optimal solutions, as checked
by the BF scheme, under different valuation functions. Sub-
sequently we present results with larger number of items
where the focus is on studying the time efficiency and scale-
up properties of the algorithms. All closing prices are drawn
from discrete closing price distributions. A simulation con-
sists of one bidder with the knowledge of all closing price dis-
tributions. This bidder can place one bid in all four auctions at
each iteration. At the end of each iteration, the bidder knows
which items it won and the payment it has to make for those
items. At the end of each simulation, the average profit of the
bidder is calculated. A run of our experiment consists of four
simulations, one for each of the bidders RSMDBI, RSMD-
BIWRn with n=5 or 10, VSMDBI, BF. For a run, bidders in
each simulation share the same valuation function. We gen-
erate four kinds of valuation functions: (a) SI, where items
are substitutable, (b) CI, where items are complementary, (c)
NRI, where items are non-related, and (d) RVI, where valua-
tions for bundles are random. Considering three set of items
I, J, K such that J ∪ K = I and J ∩ K = ∅. Items are
substitutable if ϑ(I) ≤ ϑ(J) + ϑ(K) for all such item sets.
Items are complementary if ϑ(I) ≥ ϑ(J)+ϑ(K) for all such
item sets. Items are non-related if ϑ(I) = ϑ(J) + ϑ(K) for
all such item sets. If no one of the above conditions are sat-
isfied for all item sets, we consider the items to have random
valuation. Valuation for single-item bundle is drawn from the
range [0, 100], i.e., ϑ({i}) ∈ [0, 100] ∀i ∈ I. In each run,
the same auctions are repeated in each simulation, i.e., the
same closing price distributions are utilized for each simula-
tion. We have eight predefined probability distributions. Four
of them produce price ranges from 10 to 90 and four of them
from 60 to 140 with discrete values in increments of 10. For
each range, one distribution is uniform (UP), one outputs the
highest prices with higher probability (HP), one outputs the
lowest prices with higher probability (LP), and one outputs
price in the middle of the range with higher probability (MP).

For each run, distributions for the four auctions are chosen
randomly.

5.2 Quality of solutions provided by algorithms

To compare our algorithms, we display the cumulative aver-
age profit generated by the bidders using each strategy in Ta-
ble 1. Algorithms are ordered by the net utility obtained. Hor-
izontal lines in the table groups the algorithms into blocks.
Performance of algorithms in the same block are statistically
indistinguishable according to the Wilcoxon test.

We highlight the following observations:

1. VSMDBI performs similar to RSMDBI except for RVI
valuations where performances are worse.

2. With a small number of random restarts our algorithm
always has performance similar to BF which is asymp-
totically optimal.

3. RSMDBIWRn with n = 5, 10 has better performances
than RSMDBI except for non-related items where per-
formances are equal. As we have observed before,
restarts are unnecessary for non-related items.

4. Every algorithm is optimal when items are non-related.

Remark 1 shows that choosing Bϑ1 as a starting point is a
good heuristic for some but not all cases. Remark 2 shows
that with reasonable number of restarts (5 in our experiments)
the optimal bid vector is always found. Since RSMDBI is,
in general, not optimal (Remark 3), we can say that the bid
domain has, in general, some local maxima and/or ridges.
However, since few restarts permit to find optimal bids, the
number of local maxima and ridges is not very high. Con-
sequently, RSMDBIWRn with reasonably small values of n
can be considered as an approximately optimal method. From
Remark 4, we find that almost every algorithm is optimal for
NRI. Though this result is not that significant as we know
the optimal bid vector in that case, it confirms our previous
analysis which claimed that the optimal bids are found by the
MDBI algorithm after the first N-sequential improvement ir-
respective of the initial bid vector.

5.3 Time efficiency and scale up properties

To evaluate the run time of our algorithm for larger problems,
we run experiments as described in the last section but by
changing the number of items from 4 to 15 to evaluate the
values of C(ε, N). Those experiments were similar to the
previous ones except that we output the values of C(ε, N)
and average them. We highlight the following observations:

1. Except for NRI, the number of N -sequential improve-
ments (C(ε, N)) increases very slowly. The largest
range is [2, 4].

2. The number of N -sequential improvements is always
better for VSMDBI.

3. C(ε, N) = 1 for VSMDBI and C(ε, N) = 2 for
RSMDBI when items are non-related.

We can conclude that C(ε, N) is almost constant. Conse-
quently, the computational complexity of our algorithms is
almost linear given the number of items and hence has desir-
able time efficiency and scale up properties. The third remark

IJCAI-07
1219

Strategy Score

RSMDBIWR10 1940.2
BF 1909.4

RSMDBIWR5 1907.2

VSMDBI 1859.6
RSMDBI 1856.8

(a) SI

Strategy Score

BF 7693.4
RSMDBIWR5 7693.3

RSMDBIWR10 7674.7

VSMDBI 7513.8
RSMDBI 7434.8

(b) CI

Strategy Score

RSMDBI 3748.4
VSMDBI 3731.5

RSMDBIWR10 3725.2
RSMDBIWR5 3724.7

BF 3658.3

(c) NRI

Strategy Score

RSMDBIWR10 6898.9
BF 6871.0

RSMDBIWR5 6828.6

RSMDBI 6239.8

VSMDBI 5946.3

(d) RVI

Table 1: Profits from MDBI variants with different valuation
functions.

can be explained by the fact that VSMDBI will try to improve
the initial bid B0 = Bϑ1 and will realize that there is no bet-
ter bid vector. RSMDBI will improve its initial bid vector
and reach the optimal one B∗ = Bϑ1 in one N -sequential
improvements. Then, it behaves like VSMDBI.

In a companion paper [Candale and Sen, 2006] we show
that MDBI produces equal or better solutions in much less
time compared to MU and EVMU algorithms for larger num-
ber of items than discussed here. We cannot verify the opti-
mality of those results as it was computationally prohibitive
to run the BF algorithm for those larger problem sizes. The
experimental results clearly demonstrate the effectiveness and
scalability of the MDBI schemes.

6 Conclusions

We presented a new method for bidding in simultaneous auc-
tions which is asymptotically optimal. We used a novel op-
timization based technique that improves any arbitrary bid
vector. While we developed the bidding approach assuming
continuous closing price probability distributions, we showed
that our technique is applicable when closing prices are dis-
crete. The MDBI algorithm performs optimally with few
restarts and also scales up well with the number of items.

The MDBI algorithm produces optimal bid vectors with
infinite random restarts. As this is infeasible in practice, we
evaluate variants of the scheme with finite number of restarts
and carefully chosen starting bid vectors. A surprising result
is that good solutions can be achieved without restarts when
items are substitutable, complementary, or are non-related. In
general, small number of restarts can be used to approximate
optimal expected utility in all cases.

A desirable property of our algorithm, in contrast to ex-
isting schemes, is its approximately linear time complexity.
Experimental results show that the MDBI scheme scales up
effectively with larger number of items.

We plan to study situations where a bidder can bid in both
single-item and combinatorial auctions to acquire bundles.
We also intend to adapt MDBI for generating bids for multi-
unit auctions.

Acknowledgment US National Science Foundation award
IIS-0209208 partially supported this work.

References
[Byde et al., 2002] Andrew Byde, Chris Preist, and

Nicholas R. Jennings. Decision procedures for multiple
auctions. In Proceedings of the 1st Joint International
Conference on Autonomous Agents and Multi-Agent
Systems, pages 613–620. ACM, 2002.

[Candale and Sen, 2006] Teddy Candale and Sandip Sen. A
comparison of bidding strategies for simultaneous auc-
tions. SIGecomm Exchange, 5(5):41–48, January 2006.

[Greenwald and Boyan, 2003] Amy Greenwald and Justin
Boyan. Bidding marginal utility in simultaneous auctions.
In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, pages 1463–1464, August 2003.

[Greenwald and Boyan, 2004] Amy Greenwald and Justin
Boyan. Bidding under uncertainty: theory and experi-
ments. In AUAI ’04: Proceedings of the 20th conference
on Uncertainty in artificial intelligence, pages 209–216.
AUAI Press, 2004.

[Greenwald and Boyan, 2005] Amy Greenwald and Justin
Boyan. Bidding algorithms for simultaneous auctions: A
case study. Journal of Autonomous Agents and Multiagent
Systems, 10(1):67–89, 2005.

[Greenwald and Stone, 2001] Amy Greenwald and Peter
Stone. Autonomous bidding agents in the trading agent
competition. IEEE Internet Computing, 5(2):52–60, 2001.

[Parkes, 2001] David C. Parkes. Iterative Combinatorial
Auctions: Achieving Economic and Computational Effi-
ciency. PhD thesis, University of Pennsylvania, May 2001.

[Sandholm, 2000] Tuomas Sandholm. eMediator: a next
generation electronic commerce server. In AGENTS’00:
Proceedings of the Fourth International Conference on
Autonomous Agents, pages 341–348. ACM Press, 2000.

[Sandholm, 2002] Tuomas Sandholm. Algorithm for opti-
mal winner determination in combinatorial auctions. Arti-
ficial Intelligence, 135(1):1–54, 2002.

[Sen et al., 2005] Sandip Sen, Teddy Candale, and Susnata
Basak. Profit sharing auction. In Proceedings of the Twen-
tieth International Conference on Artificial Intelligence,
pages 170–175, July 2005.

[Stone and Greenwald, 2005] Peter Stone and Amy Green-
wald. The first international trading agent competition:
Autonomous bidding agents. Electronic Commerce Re-
search, 5(2):229–65, April 2005.

[Stone et al., 2003] P. Stone, R. E. Schapire, M. L. Littman,
J. A. Csirik, and D. McAllester. Decision-theoretic bid-
ding based on learned density models in simultaneous, in-
teracting auctions. Journal of Artificial Intelligence Re-
search, 19:209–242, 2003.

IJCAI-07
1220

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

