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ABSTRACT

Bidding for multiple items or bundles on online auctions
raises challenging problems. We assume that an agent has a
valuation function that returns its valuation for an arbitrary
bundle. In the real world all or most of the items of interest
to an agent is not present in a single combinatorial auction.
We study the problem of bidding for multiple items in a set
of simultaneous auctions, each of which sell only a single
unit of a particular item. Hence an agent has to bid in mul-
tiple auctions to obtain preferred item bundles. While an
optimal bidding strategy is known when bidding in sequen-
tial auctions, only suboptimal strategies are available when
bidding for items sold in auctions running simultaneously.
To decide on an agent’s bid for simultaneous auctions, we
investigate a multi-dimensional bid improvement strategy,
which is optimal given an infinite number of restarts, . We
provide a comparison of this algorithm with existing ones,
both in terms of utilities generated and computation time,
along with a discussion of the strengths and weaknesses of
these strategies.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Coherence and coordination, Multiagent systems,
Intelligent agents

General Terms

Algorithm, Performance, Experimentation
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1. INTRODUCTION

Auction theory has received significant attention from re-
searchers following the development of electronic auctions
on the Internet. Researchers are interested both in design-
ing auctions with desirable properties [5, 6] and designing
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automated agents to represent interests of human users [3,
4, 17].

In a multi-auction setting, multiple single-item auctions
are run concurrently or sequentially. A potential bidder
needs to estimate closing prices of such auctions to compute
optimal bids. The bidder incurs the computational cost of
estimating closing prices and calculating optimal bids given
its valuation for items and the expected closing prices. The
problem of computing optimal bids is complex. While an op-
timal bidding strategy is known for sequential auctions [3,
8], none is known for simultaneous auctions.

We have developed a multidimensional bid improvement
strategy for bidding in simultaneous auctions. We use an
optimization techniques to determine bids that maximize
the expected utility function. The focus of this paper is
a comparative evaluation of our proposed algorithm with
existing ones in terms of time complexity and the quality of
the solutions generated.

2. RELATED WORK

Bidding for bundles in simultaneous auctions has received
a lot of attention partly due to the Trading Agent Compe-
tition (TAC)!. Stone et al. and Greenwald and Boyan have
studied the possibility to bid in multi-auctions in the context
of the TAC [4, 2, 8, 7], which resulted in the design of two
top-scoring agents. Their approaches, however, were funda-
mentally different from the one we have developed [1]. Our
multi-dimensional bid improvement algorithm is motivated
by optimization techniques, where, given any bid vector, we
generate the next bid vector by sequentially optimizing the
bid for each item while assuming the bid for the other items
are held constant. The approaches used by both Stone et
al. and Greenwald involve assigning valuations to individ-
ual items based on expected marginal utilities of the items.
The marginal utility of an item ¢ is the extra-profit gen-
erated by the acquisition of i at price equal to zero. The
idea behind the marginal utility is that one is willing to pay
for an item up to the benefit of getting it. We provide a
more detailed description of Stone et al's and Greenwald
and Boyan’s algorithms in Section 4 and offer a comparison
of the effectiveness of their algorithms and ours in Section 5.

3. SIMULTANEOUS AUCTION MODEL

We consider a bidder which plans to acquire items from
the set Z = {1, ..., N}. A valuation function ¥ represents
the bidder’s preference by assigning a value the bidder is
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willing to pay for each bundle. Item i is available in only
one single-item single-unit auction a;. An auction is mod-
eled by the cumulative probability distribution F; of the
closing prices in the range [p;, pi]. We assume these distri-
butions to be continuous, independent, and known to the
bidder. When a; closes, the bidder gets the item if it has
placed a bid b; greater than or equal to the closing price
pi (bi > p;) and the payment is equal to the closing price.
All auctions are run in parallel and their closing times are
not known by the bidder. B = (b1, ..., bn) represents the
bids placed simultaneously in all auctions by the bidder and
P = (p1, ..., pn) are the closing prices. We assume the
bidder to be rational, i.e., it wants to maximize its expected
utility from the purchases, if any. Hence it tries to find a

bid vector B* such that B* = argmax &(B) where B is the
BeB

bid space and @(B) is the expected utility of bidding B.

4. BIDDING STRATEGIES

We review some prominent bundle bidding strategies be-
fore discussing our approach.

4.1 Marginal utility bidding (37)

We first present the optimal bidding strategy for bundles
in sequential auctions[2, 8]. In the remainder of this pa-
per, we will refer to this method as expected marginal utility
bidding or MU. When bidding for the i'" item, the bidder
places the bid b; = fi(i, Iy, I) in auction a;. Ij contains
items held by the bidder, I, contains items to be auctioned,
(i, In, Ir) is the expected marginal utility of item ¢ which
can be viewed has the extra-profit due to the acquisition of
7 at zero-cost.

MU is optimal when bidding in sequential auctions as
shown by Greenwald and Boyan in [2]. MU is suboptimal
for simultaneous auctions. In particular, when items are
substitutable, the bidder may acquire two items it may not
desire to acquire together. Another downside of MU is its
complexity. The calculation of the marginal utility is expo-
nential since it requires the knowledge of the profit generated
by each possible bundle.

To adopt MU for simultaneous auctions, a bidder has
to compute all bids simultaneously. In that case, Z; = 0.
The bidder bids for each item as if it is the first item to be
auctioned. In other words, the bidder places b; = f(i, 0, T\
{¢}) in auction a;.

4.2 Expected Value Marginal Utility bidding
(EVMU)

In this section, we present a variant of MU introduced by
Greenwald and Boyan [2]. This variant tries to overcome the
issue raised by leaving out of consideration some bidder pref-
erences. To prevent the bidder from obtaining two “similar”
items, a set of preferred items is precomputed. We refer to
this set as the acquisition set Zeymw. The acquisition set is
the optimal set of items to be obtained assuming that items
are auctioned at deterministic prices equal to the expected
closing prices for these items. The bidder places a bid for
all items in Zeym. and the bids are equal to the expected
marginal utility of the items. Like MU, the computation of
marginal utility in EVMU is exponential.

4.3 Multi-Dimensional Bid Improvement (MDBI)

Now we present an approach to bidding in simultaneous

auctions based on an incremental optimization technique [1].

Assume that the bidder has decided, by some means, to bid

the vector B. We try to improve B replacing b; by (3:(B—;)

where 3;(B—;) is the best bid for item 4 holding other bids

constant (83;(B—;) = argmax a(b; V B—;)). We exclude
b €[pi, Pi)

the proof due to space limitations but observe that 3;(B—;)

is such that %(&-(B,i) V B_;) = 0, i.e., B;(B_;) is the

marginal e:rpectéd welfare of bidding B_;.

To use this approach the bidder has to choose an initial bid
vector By by some means, e.g., randomly. Let B; be the bid
after t iterations. Bi4+1 is obtained from B; by sequentially
improving bids for each of the N items in turn. While con-
sidering the improvement of the bid for an item, we keep the
bids for other items constant in B;. We call this N —step per-
turbation an N — sequential improvement and the algorith-
mic process a multi-dimensional bid improvement (MDBI)
scheme. The process is stopped when ||Biy1 — Bi|| < €
where ¢ is a positive constant defined by the user and || - ||
is any vectorial norm.

To improve the bid for item i, we need to calculate (3;. The
formula, however, requires exponential computation. It is
possible to approximate (3; by price sampling. The following
presents the pseudo-code to approximate (3;, where K is the
number of price samples generated from the closing price
distributions for all the items.

B0

for k=1..K do

P «— generatePriceSamples(F1, ..., Fn)

B« B+ (19 (Zac(@i vV B—;, P)) — 0 (Iac(&\/ B_,, P)))
end for
return %

Three variants of MDBI are available: Random Start Bid
Improver (RSMDBI): RSMDBI starts with a randomly
chosen bid vector and does not use restarts. Random
Start Bid Improver With Restart (RSMDBIWR®R):
RSMDBIWRn restarts the improvement process with ran-
dom bid vectors n—1 times and outputs the bid vector with
the highest expected utility. Valuation Start Bid Im-
prover (VSMDBI): VSMDBI uses the initial bid By =
(v1, ..., vn) where v; = ¥({i}) and does not use restarts.

The complexity of the approximation of 8;(B—;) is lin-
ear given K, the number of samples. In MDBI, each N-
sequential improvement requires N approximations of 8;(B—;).
The number of N-sequential improvements, C'(¢, N), corre-
spond to the number of iterations of the improvement loop.
Thus, the complexity of MDBI is O(K N C(g, N)). Experi-
mental results presented in Section 5 shows that the actual
run-time complexity of MDBI is satisfactory.

5. EXPERIMENTAL RESULTS

Our experimentation goal is to compare the efficiency of
different variants of the MDBI scheme with variants of MU
bidding both in terms of the quality of the solution generated
and time efficiency. To assess the absolute performances of
these algorithms, we use an exhaustive search-based brute
force algorithm (BF) which is asymptotically optimal

We ran our experiments in an environment containing four
single-item single-unit auctions. All closing prices are drawn
from selected discrete closing price distributions. A simula-
tion consists of one bidder with the knowledge of all clos-
ing price distributions. A run of our experiment consists



| Strategy | Score | | Strategy | Score |
RSMDBIWRI10 | 1940.29 BF 7693.41
BF 1909.42 RSMDBIWRS5 | 7693.32
RSMDBIWRS5 | 1907.25 RSMDBIWRI10 | 7674.74
VSMDBI 1859.65 VSMDBI 7513.83
RSMDBI 1856.85 RSMDBI 7434.81
EVMU 1708.18 EVMU 7413.88
MU 1600.59 MU 7202.51
(a) SI (b) CI
| Strategy [ Score | [ Strategy | Score |
RSMDBI 3748.42 RSMDBIWRI10 | 6898.97
VSMDBI 3731.57 BF 6871.01
RSMDBIWRI10 | 3725.22 RSMDBIWRS5 | 6828.67
RSMDBIWRS5 | 3724.76 RSMDBI 6239.84
MU 3715.95 EVMU 6224.37
BF 3658.38 VSMDBI 5946.33
EVMU 3522.67 MU 5184.76
(c) NRI (d) RI

Table 1: Cumulative profits of different algorithms.

of seven simulations, one for each of the bidders RSMDBI,
RSMDBIWRn with n=>5 or 10, VSMDBI, BF, MU, EVMU.
For a run, bidders in each simulation share the same valua-
tion function. We generate four kinds of valuation functions:
(a) SI, where items are substitutable, (b) CI, where items
are complementary, (¢) NRI, where items are non-related,
and (d) RI, where valuations for bundles are random.

5.1 Quality of solutions generated by algorithms

We present the cumulative average profit of the bidders
using each algorithm in Table 1. The algorithms are ordered
by the profits they generate. Algorithms with no statistical
performance difference are grouped together. To obtain such
groupings, we consider the average profits obtained by our
algorithms as random variables and use the Wilcoxon test
to identify the significance of the difference in their values.

We highlight the following observations from Table 1: (1)
RSMDBI performs similar to or better than previously known
algorithms. (2) VSMDBI performs similar to RSMDBI ex-
cept for RI valuations where performances are worse. (3)
With few random restarts our algorithm always performs

similar to BF which is asymptotically optimal. (4) RSMDBIWRn,

n = 5,10 has better performances than RSMDBI except for
non-related items where performances are equal. (5) Ev-
ery algorithm is optimal when items are non-related except
EVMU, (6) EVMU performs better than MU except when
items are non-related when its performance is worse.

5.2 Time efficiency of MDBI variants

We discussed the complexity of MDBI in Section 4.3. The
expression of this complexity contains an unknown func-
tion C(e, N). We wanted to find out the complexity of
MDBI variants in practice. We run experiments using the
RSMDBI and VSMDBI by varying the number of items, N.
The time complexity of VSMDBI and RSMDBI appears to
be linear in N. Since the complexity of MDBI is equal to
O(K NC(g, N)), C(g, N) is constant for VSMDBI given N.
We also collected the average value of C'(e, N) from our ex-
periments and can highlight the following observations: (1)

Except for non-related items, the number of N-sequential
improvements (C(e, N)) increases very slowly. The largest
range is [2, 4], (2) The number of N-sequential improve-
ments is always better for VSMDBI, (3) C(e, N) = 1 for
VSMDBI and C(e, N) = 2 for RSMDBI when items are
non-related.

6. CONCLUSION

We compared the performance of an optimization based
bidding algorithm for obtaining bundles of items in simulta-
neous auctions, MDBI, that we have recently developed with
existing algorithms from literature. We discuss variants of
the basic iterative bid-improvement algorithm: an approach
with finite number of restarts and one with no restarts but
a carefully chosen starting bid vector. Performance similar
to or better than existing algorithms in literature, MU and
EVMU, is achieved without restarts when items are sub-
stitutable, complementary or non-related. We additionally
observe that a small number of restarts can be used to ap-
proximate optimal expected utility.

Another strong point of the MDBI variants is their poly-
nomial time complexities whereas existing algorithms have
exponential complexity. While exact calculation of bid im-
provement needs combinatorial number of operations, we
approximate such calculations in linear time by a constant
number of price samples. We are currently working on for-
mally characterizing the process and the properties of the
MDBI algorithms.
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