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Abstract

We introduce a cooperative co—evolutionary system to facilitate the
development of teams of heterogeneous agents. We believe that & dif-
ferent behavioral strategies for controlling the actions of a group of k
agents can combine to form a cooperation strategy which efficiently
achieves global goals. We both examine the on-line adaption of be-
havioral strategies utilizing genetic programming and demonstrate the
successful co-evolution of cooperative individuals. We present a new
crossover mechanism for genetic programming systems in order to fa-
cilitate the evolution of more than one member in the team during each
crossover operation. Our goal is to reduce the time needed to evolve
an effective team.

1 Introduction

Russell and Norvig (Russell and Norvig, 1995) define an agent as anything
which can be viewed as perceiving its environment through sensors and act-
ing upon that environment through effectors. Insects, animals, robots, and
humans all clearly fall into this definition. We can also consider software pro-
grams to be agents; the environment is the operating system and system calls
are sensors and effectors. With the transition of the Internet to the Informa-
tion Superhighway, we are entering an age where the information available at
our fingertips exceeds our capacity to process it. The Internet is ever grow-
ing and new protocols are developing. (These protocols include proprietary
databases, web page layouts, etc.) Just as we cannot hope to keep up with
the explosive growth of the Internet, we cannot expect one software agent to
handle all of the emerging data formats.

What we can envision is a society of interacting agents, exchanging in-
formation via a standard language, such as KQML (Barbuceanu and Fox,
1995; Finin et al., 1994). (Such dialog could be free or subject to market
pressures.) Agents would be able to translate a data format, integrate know-
ledge from other agents, broker services, etc. Several surveys have been made
into how human organizational theory can be leveraged into computational
agent societies (Fox, 1981; Malone, 1987; Malone, 1990; Mullen and Wellman,
1995). The present work compliments this body of literature by providing
a novel use of evolutionary algorithms for generating a team of co—adapted
agents that perform effectively in their environment.
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Coordination of the actions of agents is one of the key research topics
in multiagent systems (MAS) (Lesser, 1995; Malone, 1987; Shaw, 1996).
Distributed artificial intelligence (DAI) researchers study both organizational
behavior (Fox, 1981; Malone, 1987; Robbins, 1993) and adaptive behavior in
nature (Gotwald, Jr., 1995; Krebs and Davies, 1993) to gain insight as to
how groups effectively interact during problem solving. We are interested in
how groups form, maintain common purpose, and learn how to adapt their
individualistic goals to a common group goal. In this research we consider
the latter problem and investigate a domain in which simple greedy behavior
must be adapted to cooperative group behavior. Such mutual adaptation
and learning is of paramount importance to designers of agent groups and
societies (Weifl and Sen, 1996; Sen, 1996).

Genetic programming (GP) (Koza, 1992) is an offshoot of genetic al-
gorithms (GA) (Holland, 1975), and effectively performs an implicit parallel
search through the problem space. A population composed of random pro-
grams, or chromosomes, are constructed out of a domain specific language.
Each chromosome can be evaluated by a domain specific fitness function.
Chromosomes are then selected for the next generation, with higher scoring
chromosomes being more likely to be picked. Chromosomes undergo repro-
duction in a process similar to that seen in biological systems.

We have utilized genetic programming to evolve behavioral strategies
which enabled a team of loosely—coupled agents to cooperatively achieve a
common goal (Haynes and Sen, 1996; Haynes et al., 1995b). Since the agents
shared the same behavioral strategy, they were homogeneous, i.e., each pop-
ulation member represented the program of k agents. A simple algorithm to
model the actions of others is to believe that they behave as you would in the
same situation (Haynes et al., 1996). With homogeneous agents, the agents
can employ this algorithm since their models of other agents matches the ac-
tions of others. A key issue in DAI research is how can heterogeneous agents
cooperate to form a successful team. In this paper, we extend our research
from the evolution of homogeneous agents to the evolution of heterogeneous
agents in a team. In this paper, each chromosome in the population explicitly
represents k programs, each corresponding to an agent.

Our core problem is that of credit assignment, i.e., how to fairly reward
an individual agent for its contributions to the group goal. When individual
agents perform independent tasks in a shared environment, it is relatively
simple to distribute credit. As the goals of the individual start to overlap
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those of the group, the distribution of credit becomes problematic: if it is the
interaction of two individuals that achieves the goal, how do we determine the
distribution of credit? Suppose the first agent did nothing to aid the second,
its presence was sufficient for the task to be done. Should both agents get an
equal share of the credit? What if by the first agent helping just a little, the
task was done faster or cheaper? Should the first agent receive equal credit
in both scenarios?

We address this problem by evolving individuals in the context of a team.
The credit goes not to an individual, but to the team as a whole. Thus the
learning takes place in the team, but the adaptation occurs in individuals.
Consider a scenario where one member of a team of £ individuals is signific-
antly more effective than the others in realizing the team’s goals. If the team
performed well, the underlying genetic algorithm will most likely select it to
undergo recombination into the next generation. The single agent is not re-
warded directly. When the team undergoes recombination with another team,
individual members are stochastically selected, without regard to contribu-
tion to the team’s goals, for adaptation. Either the effective member aids the
other team’s learning or the ineffective members can engage in learning from
the other team. On the average, over time the ineffective members will adapt
to the level of the effective one.

While our proposed approach is a novel way to evolve a strategy for co-
ordinating a group of agents, the process of generating the strategy is not
distributed in nature. That is, agent teams are evolved as a whole and there
is no individual learning being performed by each agent. Even though indi-
vidual agents do not control the adaptation process, since the GP is concur-
rently adapting the team members, we believe “co-adaptation” is the proper
term to describe the evolutionary process. Once endowed with the evolved
behaviors, each agent is completely autonomous in its interactions with both
the environment and other team members, as there is no centralized control.

We use the predator/prey or pursuit problem as a testbed for our exper-
iments with evolving heterogeneous agent groups. Though this problem does
not provide all of the possible challenges for heterogeneous groups, it is suffi-
ciently complex and provides a good starting point. The predator—prey game
is a well studied stylized domain which researchers in multiagent systems
have utilized to evaluate organizations, control structures and messaging sys-
tems (Stephens and Merx, 1989; Stephens and Merx, 1990). The goal is for

four predator agents to capture a prey agent by surrounding it orthogonally.
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Although all the agents in this domain have the same capabilities, in a given
pursuit different agents might be required to play different group roles. Con-
sider the analogous situation of a team of hunters chasing a target. Animal
hunters can adopt roles in the hunt: one scouts out the quarry, one flushes the
quarry, and another kills the quarry. The roles are dynamically allocated to
fit the state of the current hunt. Each hunter must be capable of performing
each role.

The key aspects of the domain are that agent groups must be effectively
coordinated while retaining individual autonomy and that groups must be
able to anticipate and adapt their problem solving technique to new and de-
manding situations. An off-line design of behavioral strategies for the agents
is bound to be limited in its applications as all possible interactions cannot
be anticipated at design time. Thus we are interested in on—line adaptive
mechanisms for tailoring group behavior.

Agents, and in particular, groups of agents are becoming increasingly
commonplace in the real world. Although we use an artificial problem do-
main, the methodology we investigate is clearly promising enough to address
broader challenges in the future. Genetic algorithms were once much ma-
ligned for working with benchmark problem suites, but nowadays almost all
applications are in engineering fields (Davis, 1991). Our work will show the
potential for using GPs in developing effectively coordinated multiagent sys-
tems. We plan to further investigate real-life agents like coordinated meeting
schedulers and cooperative controllers with the proposed methodology. But
we have to develop the methodology using a well-understood problem domain
which can be effectively simulated and in which we have enough data avail-
able to compare our methodology with that of other techniques that have been
used in the domain. The predator-prey domain perfectly suits this bill.

The rest of this paper is laid out as follows: Section 2 presents our method-
ology for coordinating agent groups. Section 3 introduces the pursuit domain.
Section 4 provides an overview of genetic programming, presents how we eval-
uate predator—prey games, and describes the experimental setup. Section 5
presents our crossover strategy for improving the learning of the team. Sec-
tion 6 compares the utility of the crossover strategies as they evolve teams.
Section 7 wraps up our research into team formation. Section 8 points out
how this work can be extended.
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2 Coordination of Agent Groups

The underlying goal of our research is to generate programs for the coordin-
ation of cooperative actions from a group of autonomous agents which are
initially uncooperative. The agents must adapt from greedy local behavior
to working towards a common goal. In effect, we want to evolve behavioral
strategies that guide the actions of agents in a given domain. The identific-
ation, design, and implementation of strategies for coordination is a central
research issue in DAI (Bond and Gasser, 1988). Current research techniques
in developing coordination strategies are mostly off-line mechanisms that use
extensive domain knowledge to design from scratch the most appropriate co-
operation strategy. In most cases a coordination strategy is chosen if it is
reasonably good.

In (Haynes et al., 1995b), we presented a new approach for developing
coordination strategies for multiagent problem solving situations, which is
different from most of the existing techniques for constructing coordination
strategies in two ways:

e Strategies for coordination are incrementally constructed by repeatedly
solving problems in the domain, i.e., on—line.

o We rely on an automated method of strategy formulation and modific-
ation, that depends very little on domain details and human expertise,
and more on problem solving performance on randomly generated prob-
lems in the domain.

Our approach for developing coordination strategies for multi—agent prob-
lems is completely domain independent, and uses the strongly typed genetic
programming (STGP) paradigm (Montana, 1995), which is an extension of
GP. To use the STGP approach for evolving coordination strategies, the
strategies are encoded as symbolic expressions (S—expressions) and an evalu-
ation criterion is chosen for evaluating arbitrary S—expressions. The mapping
of various strategies to S—expressions and vice versa can be accomplished by a
set of functions and terminals representing the primitive actions in the domain
of the application. Evaluations of the strategies represented by the structures
can be accomplished by allowing the agents to execute the particular strategies
in the application domain. We can then measure their efficiency and effective-
ness by some criteria relevant to the domain. Populations of such structures
are evolved to produce increasingly efficient coordination strategies.
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In this work we examine the rise of cooperation strategies without implicit
communication. In our previous research, the developed strategies had impli-
cit communication in that the same program was used to control the predator
agents. This removal of implicit communication is achieved by having each
predator agent being controlled by its own program. Such a system solves a
cooperative co—evolution problem as opposed to a competitive co—evolution
problem as described in (Angeline and Pollack, 1993; Haynes and Sen, 1996;
Reynolds, 1994). We believe that cooperative co—evolution provides oppor-
tunities to produce solutions to problems that cannot be solved with implicit
communication.

3 Pursuit Domain

We have used the predator—prey pursuit game (Benda et al., 1986) to test
our hypothesis that useful coordination strategies can be evolved using the
STGP paradigm for non—trivial problems. This domain involves multiple
predator agents trying to capture a mobile prey agent in a grid world by
surrounding it. The predator—prey problem has been widely used to test new
coordination schemes (Gasser et al., 1989; Korf, 1992; Levy and Rosenschein,
1992; Stephens and Merx, 1989; Stephens and Merx, 1990). The problem is
easy to describe, but extremely difficult to solve; the performances of even
the best manually generated coordination strategies are less than satisfactory.
We showed that STGP evolved coordination strategies perform competitively
with the best available manually generated strategies.

The original version of the predator—prey pursuit problem was introduced
by Benda, et al. (Benda et al., 1986) and consisted of four blue (predator)
agents trying to capture a red (prey) agent by surrounding it from four direc-
tions on a grid—world. Agent movements were limited to either a horizontal
or a vertical step per time unit. The movement of the prey agent was random.
No two agents were allowed to occupy the same location. The goal of this
problem was to show the effectiveness of nine organizational structures, with
varying degrees of agent cooperation and control, on the efficiency with which
the predator agents could capture the prey.

The approach undertaken by Gasser et al. (Gasser et al., 1989) allowed
for the predators to occupy and maintain a Lieb configuration (each predator
occupying a different quadrant, where a quadrant is defined by diagonals
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intersecting at the location of the prey) while homing in on the prey. This
study, as well as the study by Singh (Singh, 1990) on using group intentions
for agent coordination, lacks any experimental results that allow comparison
with other work on this problem.

Stephens and Merx (Stephens and Merx, 1989; Stephens and Merx, 1990)
performed a series of experiments to demonstrate the relative effectiveness
of three different control strategies. They defined the local control strategy
where a predator broadcasts its position to other predators when it occupies
a neighboring location to the prey. Other predator agents then concentrate on
occupying the other locations neighboring the prey. In the distributed control
strategy, the predators broadcast their positions at each step. The predat-
ors farther from the prey have priority in choosing their target location from
the preys neighboring location. In the centralized—control strategy, a single
predator directs the other predators into subregions of the Lieb configura-
tion. Stephens and Merx experimented with thirty random initial positions
of the predators and prey problem, and discovered that the centralized control
mechanism resulted in capture in all configurations. The distributed control
mechanism also worked well and was more robust. They also discovered the
performance of the local control mechanism was considerably worse. In their
research, the predator and prey agents took turns in making their moves. We
believe this is not very realistic. A more realistic scenario is for all agents to
choose their actions concurrently. This will introduce significant uncertainty
and complexity into the problem.

Korf (Korf, 1992) claims in his research that a discretization of the con-
tinuous world that allows only horizontal and vertical movements is a poor
approximation. He calls this the orthogonal game. Korf developed several
greedy solutions to problems where eight predators are allowed to move or-
thogonally as well as diagonally. He calls this the diagonal game. In Korf’s
solutions, each agent chooses a step that brings it nearest to the predator.
A maxz norm distance metric (maximum of = and y distance between two
locations) is used by agents to chose their steps. The predator was captured
in each of a thousand random configurations in these games. But the max
norm metric does not produce stable captures in the orthogonal game; the
predators circle the prey, allowing it to escape. Korf replaces the previously
used randomly moving prey with a prey that chooses a move that places it
at the maximum distance from the nearest predator. Any ties are broken
randomly. He claims this addition to the prey movements makes the problem
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considerably more difficult.

Manela and Campbell investigated the utility of N x M (predators x
prey) pursuit games as a testbed for DAI research. (Manela and Camp-
bell, 1993) They utilized genetic algorithms to evolve parameters for decision
modules. A difference between their domain and the others is that the grid is
bounded, and not toroidal, i.e., the neighbors of a cell on the edge are those
cells on the other edge. They found that the 4 x 1 game was not interesting
for DAI research. They concluded that (M +4) x M, M > 4, games have
the right complexity to be good testbeds. We believe their argument is invalid
in our domain where the grid world is toroidal. One benefit of a bounded
grid world is that teams of size two and three can effect a capture of the prey
by trapping it against the walls. By removing the bounds, the 4 x 1 game
becomes interesting for DAI research.

In our prior research (Haynes et al., 1995b; Haynes et al., 1995a), we
have utilized genetic programming to evolve a behavioral strategy to control
all of the predator agents in their pursuit of the prey. FEach chromosome
represented a behavioral strategy which was employed by all of the predator
agents. We compared the best strategy evolved by the genetic programming
system against our implementations of Korf’s algorithms. We found that the
evolved strategy was comparable to the hand-crafted ones. Furthermore, we
have determined that this problem is deceptively simple: if the agents have no
memory and are no allowed communication, there exist simple prey strategies
(such as sit still or move in a straight line) which consistently evade capture
by the predator strategies.

4 Evolving Coordination Strategies

4.1 Genetic Programming

Holland’s work on adaptive systems (Holland, 1975) produced a class of biolo-
gically inspired algorithms known as genetic algorithms that can manipulate
and develop solutions to optimization, learning, and other types of problems.
In order for GAs to be effective, the solution should be represented as n—ary
strings (though some recent work has shown that GAs can be adapted to
manipulate real-valued features as well). Though GAs are not guaranteed to
find optimal solutions (unlike Simulated Annealing algorithms), they still pos-
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sess some nice provable properties (optimal allocation of trials to substrings,
evaluating exponential number of schemas with linear number of string eval-
uations, etc.), and have been found to be useful in a number of practical
applications (Davis, 1991).

Koza’s work on Genetic Programming (Koza, 1992) was motivated by the
representational constraint in traditional GAs. Koza claims that a large num-
ber of apparently dissimilar problems in artificial intelligence, symbolic pro-
cessing, optimal control, automatic programming, empirical discovery, ma-
chine learning, etc. can be reformulated as the search for a computer program
that produces the correct input-output mapping in any of these domains. As
such, he uses the traditional GA operators for selection and recombination of
individuals from a population of structures, and applies them on structures
represented in a more expressive language than used in traditional GAs.
The representation language used in GPs are computer programs represen-
ted as Lisp S—expressions. Although GPs do not possess the nice theoretical
properties of traditional GAs, they have attracted a tremendous number of
researchers because of the wide range of applicability of this paradigm, and
the easily interpretable form of the solutions that are produced by these al-
gorithms (Angeline and Kinnear, Jr., 1996; Kinnear, Jr., 1994; Koza, 1992;
Koza, 1994).

A GP algorithm can be described as follows:

1. Randomly generate a population of N programs made up of functions
and terminals in the problem.

2. Repeat the following step until termination condition is satisfied:

(a) Assign fitness to each of the programs in the population by execut-
ing them on domain problems and evaluating their performance in
solving those problems.

(b) Create a new generation of programs by applying fitness propor-
tionate selection operation followed by genetic recombination op-
erators as follows:

o Select N programs with replacement from the current popula-
tion using a probability distribution over their fitness.

o (Create new population of N programs by pairing up these
selected individuals and swapping random sub—parts of the
programs.
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3. The best program over all generations (for static domains) or the best
program at the end of the run (for dynamic domains) is used as the
solution produced by the algorithm.

In GP, the user needs to specify all of the functions, variables and con-
stants that can be used as nodes in the S—expression or parse tree. Functions,
variables and constants which require no arguments become the leaves of the
parse trees and thus are called terminals. Functions which require argu-
ments form the branches of the parse trees, and are called functions or non—
terminals. The set of all terminals is called the terminal set, and the set of all
functions is called the function set. In traditional GP, all of the terminal and
function set members must be of the same type. Montana (Montana, 1995)
introduced STGP, in which the variables, constants, arguments, and returned
values can be of any type. The only restriction is that the data type for each
element be specified beforehand.

4.2 Experimental Setup

In our experiments, the initial configuration consisted of the prey in the center
of a 30 by 30 grid, and the predators are placed in random non-overlapping
positions. All agents choose their action simultaneously. For the training
cases, each team is allowed 100 moves per case. The environment is updated
after all of the agents select their moves, and then the agents again choose
their next action based on the updated state. Conflict resolution is necessary
since we do not allow two agents to co—occupy a position. If two agents try
to move into the same location simultaneously, they are “bumped back” to
their prior positions. One predator, however, can push another predator (but
not the prey) if the latter decided not to move. The prey’s movements are
controlled by a strategy that moves it away from the nearest predator, with
all ties being non—deterministically broken. The prey does not move 10% of
the time: this effectively makes the predators travel faster than the prey. The
grid is toroidal in nature, and diagonal moves are not allowed. A capture is
defined as all four predator agents occupying the cells directly adjacent, and
orthogonal, to the prey, i.e., when the predators block all the legal moves of
the prey.

A predator can see the prey, and the prey can see all the predators.
However, two predators cannot communicate to resolve conflicts or negoti-
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ate a capture strategy. The latter eliminates explicit communication between
agents.

4.3 Evaluation of Coordination Strategies

To evolve coordination strategies for the predators using STGP we need
to rate the effectiveness of those strategies represented as programs or S—
expressions. We chose to evaluate such strategies by putting them to task on
k randomly generated pursuit scenarios. For each scenario, a program is run
for 100 time steps. The percentage of capture is used as a measure of fitness
when we are comparing several strategies over the same scenario. Since the
initial population of strategies are randomly generated, it is very unlikely that
any of these strategies will produce a capture. Thus we need additional terms
in the fitness function to differentially evaluate these non—capture strategies.
The key aspect of GPs (including STGP) or GAs is that even though a par-
ticular structure is not effective, it may contain useful substructures which
when combined with other useful substructures, will produce a highly effect-
ive structure. The evaluation (fitness) function should be designed such that
useful sub—structures are assigned due credit.

With the above analysis in mind, we designed our evaluation function of
the programs controlling the predators to contain the following terms:

o After each move is made according to the strategy, the fitness of the
program representing the strategy is incremented by (Grid width) /
(Distance of predator from prey), for each predator. Thus higher fitness
values result from strategies that bring the predators closer to the prey,
and keep them near the prey. This term favors programs which produce
a capture in the least number of moves.

e When a simulation ends, for each predator occupying a location adja-
cent to the prey, a number equal to (number of moves allowed * grid width)
is added to the fitness of the program. This term is used to favor situ-
ations where one or more predators surround the prey.

e Finally, if a simulation ends in a capture position, an additional reward
of (4 * number of moves allowed * grid width) is added to the fitness of
the program. This term strongly biases the evolutionary search toward
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programs that enable predators to maintain their positions when they
succeed in capturing a prey.

In our experiments, the distance between agents is measured by the Man-
hattan distance (sum of x and y offsets) between their locations. We have
limited the simulation to 100 time steps. As this is increased, the capture
rate will increase.

In order to generate general solutions, (i.e., solutions that are not depend-
ent on initial predator—prey configuration), the same k training cases were run
for each member of the population per generation. The fitness measure be-
comes an average of the training cases. These training cases can be either the
same throughout all generations or randomly generated for each generation.
In our experiments, we used random training cases per generation.

4.4 Encoding of Behavioral Strategies

In Korf’s implementation of the predator-prey domain, he utilized the same
algorithm to control each of the predator agents. We evolve behavioral
strategies to be used by the predator agents. Behavioral strategies are en-
coded as S—expressions. Terminal and function sets in the pursuit problem
are presented in Tables 1 and 2. In our domain, the root node of all parse
trees is enforced to be of type Tack, which returns the number corresponding
to one of the five choices the prey and predators can make (Here, North, Fast,
West, and South). Notice the required types for each of the terminals, and
the required arguments and return types for each function in the function set.

Our choice of sets reflect the simplicity of the solution proposed by Korf.
One of our goals is to have a language in which the algorithms employed by
Korf can be represented.



Co-adaptation in a Team 14

‘ Terminal ‘ Type ‘ Purpose ‘
B Boolean | TRUE or FALSE

Bi Agent The current predator.
Predl Agent The first predator.
Pred2 Agent The second predator.
Pred3 Agent The third predator.
Pred4 Agent The fourth predator.

Prey Agent The prey.

T Tack Random Tack in the
range of Here to North
to West.

Table 1: Terminal Set

‘ Function ‘ Return ‘ Arguments ‘ Purpose/Return ‘
CellOf Cell Agent A Get the cell
and Tack B | coord of A in B.
IfThenElse | Type of | Boolean A, | If A then do B
B and C | Generic B else do C. (B and
and C C must have the
same type.)
< Boolean | Length A If A < B, then
and TRUE else
Length B FALSE.
MD Length | Cell A Manhattan
and Cell B | distance between
A and B.

Table 2: Function Set
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5 Establishing an Environment for Teamwork

In our earlier work, each program was represented as a chromosome in a
population of individuals. One method to compose a team from different
chromosomes is to randomly selected members from the population of chro-
mosomes, with each member awarded a certain percentage of the total fitness.
(We could also ensure that each member of the population participates in ¢
teams.) Each member would get the points that it definitely contributed to
the team’s fitness score. How do we divide up the team’s score among the
participating members (chromosomes)? Is it fair to evenly divide the score?
Assuming k£ members to a team, if the actions of one individual accounted
for a large share of the team’s score, why should it only get %th of the score?
This problem is the same as the credit assignment problem in (Grefenstette,
1988). Another way to create teams is to deterministically split the popula-
tion into k sized teams. Thus the first & individuals would always form the
first team. The problem with this is that it imposes an artificial ordering
on the population. The same team in generation (; might not be formed in
generation (741 due to a re-ordering caused by the reproductive cycle.

The method we employ to ensure consistency of membership of a team is
to evolve a team rather than an individual. Thus each chromosome consists
of k programs. Subject to the effects of crossover and mutation, we are
ensured that the same members will form a team. This effectively removes
the credit assignment problem. FEach team member always participates in
the same team. Thus all of the points it is awarded, for both its individual
contribution and the teams contribution, are correctly apportioned to the
entire team.

This approach is similar to “the Pitt approach” used for evolving Genetic—
Based Machine Learning systems (DeJong, 1990). For GA based production
systems, there are two camps as how to maintain a ruleset: the Pitt ap-
proach is to maintain the entire ruleset as an individual string with the entire
population being a collection of rulesets, and “the Michigan approach” is to
maintain the entire population as the ruleset. In the Michigan approach there
is the credit assignment problem of how to correctly award individual rules
for their contributions to the global solution. The Pitt approach bypasses the
credit assignment problem, in that rules are only evaluated in the context of
a ruleset. A similar mechanism as proposed in this paper has been used to
successfully co—evolve a set of prototypes for supervised concept classification
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problems (Knight and Sen, 1995).

Our method of maintaining consistency in a team does introduce a prob-
lem in that what do we do for crossover? Do we allow crossover, as shown
in Figure 1, to take place in the usual sense? (i.e. only one of the programs
participates in the crossover.) Or, as shown in Figure 2, do we allow all of the
programs to participate in crossover? The first crossover mechanism allows
only relatively small changes of parent structures to produce offspring, and
our conjecture is that it slows down learning. We investigate the utility of
allowing multiple programs to participate during the crossover process. We
consider the following crossover functions:

TeamTree For comparison purposes we present the method in which all
agents share the same program.

TeamBranch This method is simply to pick one crossover point in the chro-
mosome (see Figure 1). This is the traditional GP crossover mechanism.

_ Crossover Point

Figure 1: Example crossover for 1 crossover point in a chromosome.

TeamUniform This crossover mechanism is to adapt the uniform crossover
function from GA research (Syswerda, 1989) (see Figure 2). Basically
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we develop a uniform crossover mask for the programs inside a chromo-
some. A “1”7 indicates that the programs are copied into the respective
child, while a “0” indicates that the programs will undergo crossover.
We are able to use the uniform crossover function because the number
of programs in a team is fixed. Since the programs are not atomic in
the sense that alleles in GAs are, we can randomly determine the in-
teractions between the programs. An example of this is if we decided
that the order of interaction between two parent chromosomes ¢ and
J is 4(3241) and j(4123), and the bit mask is {1001}, then this would
produce the children s(3(2X1)(4X2)1) and #(4(2X1)(4X2)3). This is
represented visually in Figure 2. The programs have been re—ordered
such that 13 is paired with j4, etc. We utilize this reordering to allow
the new crossover method to have the same flexibility as the others, i.e.
any branch in one chromosome can engage in crossover with any branch
in another chromosome.

Some recent work in competitive co-evolution has involved concurrently
evolving agents that compete against each other. Hence individuals from
two co-evolving populations can be used to evaluate each other (Rosin and
Belew, 1995; Haynes and Sen, 1996; Grefenstette and Daley, 1996). This
mode of evolution offers the possibility of a graded variation of environmental
challenges which can allow for more effective agents to be developed over
time (as opposed to preselecting a set of standard problems for evaluating
agents). Work in competitive co-evolution has also included island models,
which involves evolving subpopulations with occasional migration (Tanese,
1989).

Our team strategies, TeamBranch and TeamUniform, may be thought of
as cooperative co-evolution processes where each subpopulation consists of
programs that represent one of the agents. There is an exchange of genetic
material between two agents from two different subpopulations through the
crossover operation; this exchange of information may be likened to migration
between the subpopulations. In our implementation, we dictate that the k-th
team or structure is formed by the k-th member of each subpopulation. The
evaluation of a team is shared by all the members of the team. In the work of
Potter et al., a team is formed by combining a member of the current subpop-
ulation with the best members received from the other subpopulations (Potter
et al., 1995). The individual member of the subpopulation then receives an
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evaluation corresponding to the performance of the group thus formed. In our
work, we can view each team member to be receiving the same evaluation as
the entire team. Our assumption of allowing sharing of genetic information
between team members is also used by other GA researchers working on the
problem of cooperative co-evolution (Bull and Fogarty, 1996).
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Crossover Points

Figure 2: Example uniform crossover for the mask {1001}. (a) has Parent i
with an ordering of (3241). (b) has Parent j with an ordering of (4123). (¢)
has Child s, with two branches created via crossover. (d) has Child t, with
two branches created via crossover.
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6 Results

In a series of experiments, we have evaluated the different crossover mechan-
isms for evolving teams comprised of heterogeneous agents. The basic setup
for each experiment are as follows: a population size of 600, a maximum of
1000 generations, a crossover rate of 90% and a mutation rate of 10% (we
employ the standard mutation operator utilized in GP, i.e., if a chromosome
is selected for mutation, than randomly pick a node and replace its subtree
with a randomly generated subtree). In each generation, each chromosome
is evaluated for the same three random initial placements of predators and
prey. We ran each approach with the same six different seeds for the random
number generator. The averaged results for the best fitness per generation
for the three crossover functions are shown in Figure 3.

While TeamBranch initially learns faster than TeamTree, TeamTree is
able to learn to the same degree of cooperation. The primary significant
trend that we observe from our experiments is that while TeamBranch ini-
tially learns faster than TeamUniform, TeamUniform is able to noticeably
outperform TeamBranch in the long run. This shows that it can be more
effective to evolve a set of possibly heterogeneous agents rather than using a
homogeneous agent group.

In examining the movements of the Team Uniform agents, we realized one
of the benefits of heterogeneous predator agents: they are able to move in
different directions when in the same quadrant with respect to the prey’s
orthogonal axis. One of the observed behaviors in both the evolved homo-
geneous and hand-crafted behavioral strategies is that if two predators were
in the same quadrant, then they would select the same action (Haynes et al.,
1996). This behavior would lead to deadlock situations, for example if pred-
ators 1 and 2 are lined up on the horizontal axis with respect to the prey P,
then the predator stuck behind the other one cannot get to a capture posi-
tion. With the heterogeneous behavioral strategies, deadlock situations have
the potential to be avoided.
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7 Conclusions

Computational agent societies are rapidly approaching. As human users come
to expect more capabilities from computational resources, more effort will be
spent in developing agent groups that can cooperate to meet a variety of
user needs. Whereas agent developers can invest time in developing more
extensive and effective agent capabilities, agents from different developers
must learn to reduce conflict for resources via cooperation. Due to the nature
of open environments, such learning is best done on-line, through interaction
with other agents.

We have presented a learning strategy that improves coordination through
an evolutionary algorithmic approach. The heterogeneous agents are able to
improve co-adaption via the introduction of a new genetic programming cros-
sover function, TeamUniform. Instead of limiting crossover to one result pro-
ducing branch, multiple result producing branches are capable of exchanging
genetic material.

We have also found that heterogeneous agents have been better able to
excel compared to homogeneous agent groups in a symmetrical domain. It
would seem likely that heterogeneous agents would suffer from the lack of
simple models of others (a capability which can be exploited in homogeneous
agent systems). But we found that if heterogeneous agents are presented with
essentially the same input, i.e., a similar state induced by symmetry, they can
still perform different actions. This asymmetry of behavioral strategies allows
the agents to avoid potential deadlock situations.

8 Future Work

The predator—prey domain is very symmetrical, which favors the emergence
of homogeneous agents. To explore the degree of similarity of different be-
havioral strategies in a group, we need to develop some tools to enable us to
analyze the similarity of two chromosomes; both in semantical and syntactical
content. This is evidenced by there being two team members with different
subtrees, but with identical results.

We also want to explore the emergence of co—operative evolution in the
context of domains which are asymmetrical. We believe that in this type
of scenario, specialists will develop. In the context of the animal hunting
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example, we would expect one scout, one flusher, and one attacker to develop.
Role assignments can be static or be adaptive to take advantage of varying
environmental conditions.

We envision evolving a team consisting of generalists and specialists.
Some critical tasks are always handled by the specialists, while generalists
switch back and forth between tasks as environmental demands vary. In a
computer network, any machine can host user sessions. But software, such as
a compiler or word processor, might be restricted to certain machines due to
licensing agreements. Also, certain machines in the network might have spe-
cial hardware, such as printers, modems, plotters, etc. A process scheduler
and loader could be evolved to evenly spread tasks amongst the machines.

We are also interested in evolutionary mechanisms that allow quick ad-
aptation to environmental changes. The use of responsive adaptation mech-
anisms would allow us to evolve agent groups and modify them as the en-
vironmental demands vary. Such adaptation schemes could also include the
addition of new members to the team, and as a consequence a reorganization
of the team that will enable the most effective utilization of their resources.
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