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1. ABSTRACT
Communication is a key tool for facilitating multiagent

coordination in cooperative and uncertain domains. We
focus on a class of multiagent problems modeled as De-
centralized Markov Decision Processes with Communication
(DEC-MDP-COM) with local observability. The planning
problem for computing the optimal communication strategy
in such domains is often formulated with the assumption of
the knowledge of optimal domain-level policy. Computing
the optimal communication policy is NP-complete. There
is a need, then, for heuristic solutions that trade-off per-
formance with efficiency. We present a decision theoretic
approach for computing optimal communication policies in
stochastic environments which uses a branching future rep-
resentation and evaluates only those decisions that an agent
is likely to encounter. The communication strategy com-
puted off-line is used in the more probable scenarios that
the agent would face in future. Our approach also allows
agents to compute communication policies at run-time in
the unlikely event of the agents facing scenarios that were
discarded while computing the off-line policy.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Performance
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2. INTRODUCTION
Planning under cooperative settings have been studied ex-

tensively in the literature of multiagent systems. In this pa-
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per we develop an algorithm that tries to generate partial
communication strategies based on system-level constraints
and requirements. We decouple the planning problem of
solving for optimal communication strategy from the prob-
lem of solving for optimal domain-level strategy. We assume
that the agents know their optimal domain-level strategy.
Even then the problem falls in a higher complexity class due
to the large number of policies that need to be evaluated.
Till date, research has focused on building communication
strategies that try to solve the problem over all possible fu-
ture uncertainties and therefore include evaluation of deci-
sions on states that have a remote chance of occurrence. Our
algorithm based on decision theoretic paradigms evaluates
only those decisions that the agent has a high probability of
facing in future and prunes off with an admissible heuristic,
branches that have a low probability of occurrence. Need-
less to say, systems with higher computational capabilities
would search deeper in the evaluation tree and come up with
better communication strategies in comparison to systems
which have computational constraints. Our algorithm in-
corporates this using a system level parameter that guides
the evaluation process. Off-line communication strategies
serve as guidelines for the more probable scenarios that the
agent would face in future. Our approach however also in-
volves agents computing run-time policies in case they face
scenarios that were discarded while computing the off-line
policy.

3. THE THEORETICAL FRAMEWORK
We consider evaluating communications decisions in the

Dec MDP COM model[2] where the property of transi-
tional independence and observational independence holds.
It can be shown that given a Dec MDP COM with con-
stant message cost, the value of the optimal joint policy with
respect to any set of messages Σ∗ cannot be greater than the
value of the optimal joint policy with respect to the language
of communications (Σ = Ω)[2]. The goal of the set of agents
is to maximize their expected reward over the finite horizon
T . The decision making of each agent at each time step is
divided into two parts. The first part is the communication
step, where the agent decides whether to communicate and
waits for communications from other agents. In the second
part the agents decide on the domain-level action.

The policy of an agent i is given by the tuple πi =<

πi
a, πi

c > where πi
a is the domain-level action selection strat-

egy and πi
c is the communication strategy.



Domain-level action strategy (πi
a): A local domain level

action policy can be represented as a mapping of the last
synchronized global state, the current local state for the
agent and the time instant to a domain level action.

π
i
a : S × Si × T → Ai

Communication strategy (πi
c): A local communication

policy can be represented as a mapping of the last synchro-
nized global state, the current local state for the agent, and
the current time instant to either the current local state or
σφ (does not communicate).

π
i
c : S × Si × T → Si ∪ {σφ}

4. MEETING UNDER UNCERTAINTY
We use meeting under uncertainty as the domain of our

research. The domain consists of a grid world where two
agents have to meet starting at two initial positions in the
grid domain. Due to locally full-observable property of our
domain, the agents precisely identify their grid positions at
all times. Each agent also knows the initial grid position of
the other agent. The domain-level action set of each agent
consists of (Left, Right, Up, Down). The agent succeeds in
moving to its intended grid position with some probability
p and stays in its current position with probability (1− p).
At T = 0, the intended meeting position of the agents is
decided as the mid-point of the starting grid positions of
the two agents. However, since domain-level actions have
stochastic outcomes, the agents may deviate from their in-
tended path therefore requiring re-calculation of the meeting
position and hence their domain-level action strategy.

5. NOAC
Communication in Dec MDP COM has been studied in

details by Zilberstein and associates[1, 3]. We present a Near
Optimal algorithm for communication (NOAC) that con-
siders the scope of further communications in future while
evaluating communication decisions for a particular state
and time. To counter the computational overhead involved
in computing complete communication strategies, NOAC

computes partial off-line policies that provide a communi-
cation decision for decision contexts that are more likely to
occur in future. Each call to the NOAC contains a proba-
bility estimate, pr, which is the likelihood that the agent will
face the corresponding decision in future. We approximate
such branches with a appropriate heuristic function and pre-
vent further recursive calls originating from that branch. A
system-level factor Pc provides a lower-bound on the accept-
able value of the likelihood of occurrence of a sub-branch for
it to be expanded.

6. RESULTS
We ran experiments to compare NOAC with the no −

communication and greedy approach [1, 3]. Results pre-
sented have been averaged over 100 runs. The agents incur
a cost of 5 for every joint action and communication. They
receive a high reward of 10000 if they meet. The experi-
ment we ran was over a 7 × 7 grid world and for a horizon
of T = 9. The agents start at grid positions (0, 0) and (6, 6)

Algorithm 1: NOAC

begin
input : π1

a, π2

a, x1, y1, bs, t, pr

output: π1

c , reward

πc ← φ , πcom
c ← φ , r ← 0 , rcom ← 0 , bscom ← φ1

if t <= T then2

for ∀ < x2, y2, prob >∈ bs do3

bscom ← {(x2, y2, 1)}4

if (x1 = x2) and (y1 = y2) then5

r ← r + (prob×REWARD)6

rcom ← rcom + (prob×REWARD)7

else if (t = T ) then8

r ← r − (prob× 2× STEP COST )9

rcom ← rcom− (prob×2×STEP COST )

else10

π1
com

a ← recompute action policy11

for agent1 assuming com occurred;12

π2
com

a ← recompute action policy13

for agent2 assuming com occurred;14

if pr < Pc then15

r ← expected reward assuming16

no communication from here on17

with action policies π1

a and π2

a18

rcom ← expected reward assuming

no communication from here on19

with action policies π1
com

a and π2
com

a20

else21

< π′

c, r
′ >← COMPUTE − SUB −22

POLICY (π1

a, π2

a, x1, y1, bs, t, pr)
r ← r + r′ , πc ← πc ∪ π′

c23

< π′

c, r
′ >← COMPUTE − SUB −24

POLICY (π1
com

a , π2
com

a , x1, y1, bs
com, t, pr)

rcom ← rcom + r′ , πcom
c ← πcom

c ∪ π′

c25

if (rcom − COM COST ) > r then26

π1

c ← {(t, x1, y1, Communicate)} ∪ πcom
c27

reward← (rcom − COM COST )

else28

π1

c ← {(t, x1, y1, Don′t Communicate)} ∪ πc29

reward← r

end

respectively. We use Pc = (1 − p)2. Table 1 shows a sum-
mary of the results. Under complete uncertainty i.e p = 0.5,
the average reward generated by NOAC is almost 4 times
that of the greedy case thus revealing the myopic behavior
of the latter approach in computing efficient communication
policies. Table 2 gives the number of computations done by
NOAC off-line and on-line. On an average NOAC does 0.75
times less computations than the case for computing com-
plete optimal off-line policies which is a significant reduction.
Table 3 presents the effect on the average reward generated
and the computational overhead for increasing values of Pc.
We set p = 0.6. Pc is varied to account for 1, 2 and 3 tran-
sitional errors while calculating the off-line policy. For in-
creasing values of Pc, the average reward tends to increase as
the agents compute better communication policies but at the
cost of higher computational overhead. For Pc = 0.064, the



Algorithm 2: COMPUTE-SUB-POLICY

begin
input : π1

a, π2

a, x1, y1, bs, t, pr

output: πc, r

πc ← φ, r ← 01

a1 ← compute action for policy π1

a and grid (x1, y1)2

(x′

1, y
′

1)← update grid position for action a1;3

bs← UPDATE −BELIEF (a1, bs)4

if (x1 = x′

1) and (y1 = y′

1) then5

< π1
T−t

c , rT−t >←6

SOLV E − FOR−OPTIMAL−
POLICY (π1

a, π2

a, x′

1, y
′

1, bs, (t + 1), pr)

πc ← π1
T−t

c7

r ← r + (prob× (rT−t − 2× STEP COST ))8

else9

< π1
T−t

′

c , rT−t′ >←10

SOLV E − FOR−OPTIMAL−
POLICY (π1

a, π2

a, x′

1, y
′

1, bs, (t + 1), (p× pr))

< π1
T−t

′′

c , rT−step′′

>←11

SOLV E − FOR−OPTIMAL−
POLICY (π1

a, π2

a, x1, y1, bs, (t + 1), ((1− p)× pr))

πc ← π1
T−t

′

c ∪ π1
T−t

′′

c12

r ← r + (prob× (p× rT−t′ + (1− p)× rT−t′′ −13

2× STEP COST ))

end

Algorithm 3: UPDATE-BELIEF

begin
input : a, bs

output: updated− bs

updated− bs← φ1

for ∀ < x2, y2, prob >∈ bs do2

< x′

2, y
′

2 >← update grid position for3

successful execution of action a

updated− bs← updated− bs∪ ((x′

2, y
′

2, prob× p))4

Normalize updated− bs5

end

average reward generated is about 1.4 times that of Pc = 0.4
but this gain comes at an expense of twice as many number
of computations. Pc can be used to trade-off between the
two metrics and thus should be tuned based on the system
constraints.

7. CONCLUSION
We studied the problem of computing near optimal com-

munication policies in a DEC MDP COM domain. We
argued that due to the high complexity of computing com-
plete off-line optimal communication strategies, there is a
need to distribute some of this load over run-time and de-
rive near-optimal partial off-line strategies. Our approach
makes the evaluation process more efficient by pruning un-
likely branches in the evaluation tree. We substantiated
our approach by results from experiments on the meeting

under uncertainty domain and showed that our algorithm
generates higher average rewards in comparison to existing

No− com Greedy NOAC

p Reward Reward comms Reward comms

0.65 2365.1 3951.75 2.82 4952.85 2.58
0.6 2221.45 3751.45 2.74 4152.3 2.44
0.55 713.2 949.5 2.4 1283.01 2.67
0.5 103.25 283.25 2.1 1050.41 2.4

Table 1: Comparison between the rewards gener-
ated and number of communications occurred for
different values of p for a 7× 7 grid and T = 9.

NOAC Computations

p Off − line On− line %Savings

0.65 31028357 2439153.8 75
0.6 31028357 4358660.5 74
0.55 28691045 1801007.9 77

Table 2: Comparison between the computational
savings compared to the optimal method for differ-
ent values of p for a 7× 7 grid and T = 9.

NOAC Computations

Pc Reward Off − line On− line %Savings

0.4 2619.41 637445 3300102.3 92
0.16 2717.92 31028357 3593723.5 75
0.064 3619.08 70743085 620512.56 47

Table 3: Comparison between the reward generated
and the computational savings for different values of
Pc for a 7× 7 grid and T = 9.

heuristic techniques. As future work, we would like to ex-
tend NOAC for domains with uncertainty over domain-level
actions.
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