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Bidding for multiple items or bundles on online auctions raise challenging problems. We assume
that an agent has a valuation function that returns its valuation for an arbitrary bundle. In the real
world all or most of the items of interest to an agent is not present in a single combinatorial auction.
We focus on bidding for multiple items in a set of auctions, each of which sell only a single unit of a
particular item. Hence an agent has to bid in multiple auctions to obtain item bundles. While an
optimal bidding strategy is known when bidding in sequential auctions, only suboptimal strategies
are available when bidding for items sold in auctions running simultaneously. We investigate a
hill-climbing bidding strategy, which is optimal given an infinite number of restarts, to decide on
an agent’s bid for simultaneous auctions. We provide a comparison of this algorithm with existing
ones, both in terms of utilities generated and computation time, along with a discussion of the
strengths and weaknesses of these strategies.

Categories and Subject Descriptors: I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-

ligence—Coherence and coordination, Multiagent systems, Intelligent agents

General Terms: Performance, Experimentation

Additional Key Words and Phrases: auctions, bidding, multi-dimensional bid improvement

1. INTRODUCTION

This paper deals with bidding strategies for purchasing multiple items or bundles
from simultaneous electronic auctions. Auction theory has received significant at-
tention from agent researchers following the development of electronic auctions on
the Internet. Researchers are interested both in designing auctions with desirable
properties [Parkes 2001; Sandholm 2000; Sen et al. 2005; Wurman et al. 1998] and
designing automated agents to represent interests of human users [Greenwald and
Boyan 2004; Stone and Greenwald 2003]. Bidding strategies for single-item auc-
tions are well-known. For strategy-proof auctions, a rational bidder will bid its true
valuation for the item. The problem of computing optimal bids is more complex
when bidding for multiple items. The valuation function of a potential buyer ex-
presses the maximum amount it is willing to pay to acquire each bundle of items.
In a multi-auction setting, multiple single-item auctions are run concurrently or
sequentially. A potential bidder needs to estimate closing prices of such auctions
to compute optimal bids. In multi-auction settings, auctions can be sequential or
simultaneous. Sequential auctions close at a predetermined known order. Simul-
taneous auctions run in parallel. Bids to be submitted to all auctions have to be
computed simultaneously.

Bidding in simultaneous auctions has received a lot of attention partly due to
the Trading Agent Competition (TAC, http://www.sics.se/tac/). A TAC agent
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represents clients for which it has to organize travel packages. Travel goods consist
of airline tickets, hotel reservations, tickets for entertainment events, etc. The
agent has to obtain those items in single-item auctions as inexpensively as possible
to maximized profits while offering attractive bundles to its clients.

Bidding in multiple auctions have also been studied in other contexts. For ex-
ample, Boutilier et al. have studied the bundle bidding problem for allocating
resources [Boutilier et al. 1999]. In their model, agents share a pool of resources
and need particular resources to perform specific tasks. Resources are auctioned
sequentially and price distributions are learned online. Bids are computed using a
Markov Decision Process and the optimal policy is determined using value iteration.

Bid computation often assumes discrete closing price distributions as minimum
bid increments in some real-life auctions lead to discrete closing prices. Even with
discrete bids, however, calculating optimal bids using brute force methods leads to
exponential complexity. If N is the number of items and nb is the maximum number
of possible bids for any item, deciding optimal bids requires O(nN

b ) expected utility
calculations. To reduce this complexity, the marginal utility bidding approach has
been used [Greenwald and Boyan 2004; 2005; Stone et al. 2003]. The marginal
utility of an item is the additional profit earned by acquiring that item. Profits
are calculated by estimating future closing prices of items to be acquired. While
this method is optimal for sequential auctions, it is suboptimal for simultaneous
auctions. We believe that part of this problem is due to the loss of information
about the bidder’s preferences. For example, if a bidder has the same valuation
for two items A and B, i.e., ϑ({A}) = ϑ({B}), and these two items have the same
closing price distribution, the bidder will always bid the same value for A and B.
When those items are substitutable, i.e. ϑ({A}) + ϑ({B}) > ϑ({A, B}), this may
not be optimal since it may be preferable to have a high bid for one and a low
bid for the other. In sequential auctions, the extra information received from the
outcome of completed auctions helps avoid this problem.

We have recently developed a multi-dimensional bid improvement technique to
determine bids that maximize the expected utility function. We reason with contin-
uous closing price distributions as this allows us to address a more general setting
and working with a continuous space allows us to apply powerful optimization
methods not available for discrete spaces. Our technique can also be applied to
find optimal bids given discrete closing price distributions. While we present the
motivation, characteristics and other technical details in an auxilliary paper (under
review), the focus of this paper is an experimental comparative evaluation of our
proposed algorithm with existing ones in terms of time complexity and the quality
of the solutions generated. We experiment with a variety of valuation functions
and closing price distributions to gauge both the absolute performance, in terms of
optimality, of our approach as well as relative solution quality and computational
efficiency of our approach when compared to existing approaches.

We provide a more detailed description of bidding algorithms for two top-scoring
agents [Greenwald and Boyan 2004; 2005; Stone et al. 2003; Stone and Greenwald
2003] in the Trading Agent Competition (TAC) in Section 3 and offer a comparison
of the effectiveness of their algorithms and ours in Section 4.
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2. SIMULTANEOUS AUCTION MODEL

We consider a bidder which plans to acquire items from the set I = {1, . . . , N}.
A valuation function ϑ represents the bidder’s preference by assigning a value the
bidder is willing to pay for each bundle. Item i is available in only one single-
item single-unit auction ai. An auction is modeled by the cumulative probability
distribution Fi of the closing prices in the range [pi, pi]. We assume these distri-
butions to be continuous, independent and known to the bidder. When ai closes,
the bidder gets the item if it has placed a bid bi greater than or equal to the
closing price pi (bi ≥ pi) and the payment is equal to the closing price. All auc-
tions are run in parallel and their closing times are not known by the bidder.
B = (b1, . . . , bN ) represents the bids placed simultaneously in all auctions by the
bidder and P = (p1, . . . , pN ) are the closing prices. We assume bidders to be ra-
tional, i.e., it wants to maximize its expected utility. Hence it tries to find a bid
vector B∗ such that B∗ = argmax

B∈B

ᾱ(B) where B is the bid space and ᾱ(B) is the

expected utility of bidding B.

3. BIDDING STRATEGIES

We present below the bundle bidding strategies that we subsequently evaluate.

3.1 Marginal utility bidding (MU)

We first present the optimal bidding strategy for bundles in sequential auctions [Green-
wald and Boyan 2004; Stone et al. 2003]. In the remainder of this paper, we will
refer to the method as expected marginal utility bidding or MU . When bidding for
the ith item, the bidder places the bid bi = µ̄(i, Ih, Ir) in auction ai. Ih contains
items held by the bidder, Ir contains items to be auctioned, µ̄(i, Ih, Ir) is the ex-
pected marginal utility of item i; it can be viewed has the extra-profit due to the
acquisition of i at zero-cost.

For simultaneous auctions, a bidder has to compute all bids simultaneously. In
that case, Ih = ∅. The bidder bids for each item as if it is the first item to be
auctioned. In other words, the bidder places bi = µ̄(i, ∅, I \ {i}, ) in auction ai.

MU is optimal when bidding in sequential auctions as shown by Greenwald in
[Greenwald and Boyan 2004]. MU is suboptimal for simultaneous auctions. In
particular, when items are substitutable, the bidder may acquire two items it may
not desire to acquire together. Another downside of MU is its complexity. The
calculation of the marginal utility is exponential since it requires the knowledge of
the profit generated by each possible bundle.

3.2 Expected Value Marginal Utility bidding (EVMU)

In this section, we present a variant of MU introduced by Greenwald [Greenwald
and Boyan 2004]. This variant tries to overcome the issue raised by leaving out of
consideration some bidder preferences. To prevent the bidder from obtaining two
“similar” items, a set of preferred items is precomputed. We refer to this set as the
acquisition set Ievmu. The acquisition set is the optimal set of items to be obtained
assuming that items are auctioned at deterministic prices equal to the expected
closing prices corresponding to these items. The bidder places a bid for all items
in Ievmu and the bids are equal to the expected marginal utility of the items. Like
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MU , the computation of marginal utility in EVMU is exponential.

3.3 Multi-dimensional Bid Improvement (MDBI)

Now we present an approach to bidding in simultaneous auctions based on an
incremental optimization technique [Candale 2005], a multi-dimensional bid im-
provement algorithm (MDBI). An initial bid vector B0 is chosen. Let Bt be the
bid after t iterations. Bt+1 is obtained by sequentially improving bids for each of
the N items in turn. While considering the improvement of the bid for an item, we
keep the bids for other items constant in Bt. We call this N − step perturbation
an N − sequential improvement. The process is stopped when ||Bt+1 − Bt|| < ε

where ε is a positive constant defined by the user and || · || is any vectorial norm.
To improve the bid for item i, we replace the bid for the ith item with the

optimum bid for that item holding the bids for other items constant. More formally,
we use βi(B−i) = argmax

bi∈[pi, pi]

ᾱ(bi ∨ B−i). The following presents the pseudo-code to

approximate βi, where K is the number of price samples generated from the closing
price distributions for all the items.

β ← 0
for k = 1..K do

P ← generatePriceSamples(F1, . . . , FN )
β ← β +

(

ϑ (Iac(pi ∨B−i, P ))− ϑ
(

Iac(pi ∨B−i, P )
))

end for

return
β

K
We present three variants of MDBI:

Random Start Bid Improver (RSMDBI):. RSMDBI starts with a randomly cho-
sen bid vector and does not use restarts.

Random Start Bid Improver With Restart (RSMDBIWRn):. RSMDBIWRn restarts
the hill-climbing process with random bid vectors n− 1 times and outputs the bid
vector with the highest expected utility.

Valuation Start Bid Improver (VSMDBI):. VSMDBI starts with the bid Bϑ1 =
(v1, . . . , vN ), where vi = ϑ({i}), and does not use restarts1.

The complexity of the approximation of βi(B−i) is linear given K the number of
samples. In MDBI, each N -sequential improvement requires N approximations of
βi(B−i). The number of N -sequential improvement, C(ε, N), corresponds to the
number of iterations of the improvement loop. Thus, the complexity of MDBI
is O(K N C(ε, N)). Experimental results presented in Section 4 shows that the
complexity of MDBI is satisfactory.

3.4 Brute force algorithm (BF)

In this section, we discuss an exhaustive search-based bidding algorithm: we assume
that the bidder has a finite set of bids it can place for every item2. The brute force
algorithm (BF) estimates the expected utility of bidding for every possible bid

1Restarts are used to avoid local maxima.
2If prices are discrete, the set of bids can be the set of prices.
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combination. The bid vector with the best expected utility is used to bid in all
the auctions. Computing one expected utility requires an exponential number of
computation. However, this value can be approximated by price sampling. In that
case, BF is asymptotically optimal. When the number of samples tends to infinity,
the error in the estimation of expected utility tends to zero.

BF is asymptotically optimal, but its complexity is exponential. Indeed, the
expected utility generated by each possible bundle is calculated.

4. EXPERIMENTAL RESULTS

4.1 Experimental settings

Our experimentation goal is to compare the efficiency of different variants of the
MDBI scheme with variants of MU bidding both in terms of the quality of the
solution generated and time efficiency.

We ran our experiments in an environment containing four single-item single-unit
auctions. All closing prices are drawn from discrete closing price distributions. A
simulation consists of one bidder with the knowledge of all closing price distribu-
tions. This bidder can place one bid in all four auctions at each iteration. At the
end of each iteration, the bidder knows which items it won and the payment it has
to make for those items. At the end of each simulation, the average profit of the
bidder is calculated. A run of our experiment consists of seven simulations, one for
each of the bidders RSMDBI, RSMDBIWRn with n=5 or 10, VSMDBI, BF, MU ,
EVMU. For a run, bidders in each simulation share the same valuation function.
We generate four kinds of valuation functions: (a) SI where items are substitutable,
(b) CI where items are complementary, (c) NRI where items are non-related, and
(d) RI where valuations for bundles are random. Valuation for single-item bundle
is drawn from the range [0, 100], i.e., ϑ({i}) ∈ [0, 100] ∀i ∈ I. In each run, the
same closing price distributions are used for each simulation. We have used eight
predefined closing distributions: four of them produce price ranges from 10 to 90
and four of them from 60 to 140 with increment of 10. For each range, one dis-
tribution is uniform (UP), one outputs higher prices with higher probability (HP),
one outputs lower prices with higher probability (LP), and one outputs price in the
middle of the range with higher probability (MP). For each run, distributions for
the four auctions are chosen randomly.

4.2 Quality of solutions generated by algorithms

For performance comparison, we present the cumulative average profit made by the
bidders using each algorithm in Table I. The algorithms are ordered by the profits
they generate. Algorithms with no statistical performance difference are grouped
together. To obtain such groupings, we consider the average profits output by our
algorithms as random variable and use the Wilcoxon test to identify the significance
of the difference in the performances.

We highlight the following observations from Table I:

(1) RSMDBI performs similar to or better than previously known algorithms.

(2) VSMDBI performs similar to RSMDBI except for RI valuations where perfor-
mances are worse.
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(3) With few random restarts our algorithm always performs similar to BF which
is asymptotically optimal.

(4) RSMDBIWRn, n = 5, 10 has better performances than RSMDBI except for
non-related items where performances are equal.

(5) Every algorithm is optimal when items are non-related except EVMU,

(6) EVMU performs better than MU except when items are non-related when its
performance is worse.

Remark 1 above shows that RSMDBI is preferable to MU and EVMU. In fact,
RSMDBI has performances equal to or better than MU variants. Remark 2 shows
that choosing Bϑ1 as a starting point may be a good heuristic for particular situa-
tions but is not a good idea in general. Remark 3 shows that with reasonable num-
ber of restarts (5 in our experiments) the optimal bid vector is always found. Since
RSMDBI is, in general, not optimal (Remark 4), we can say that the bid domain
has, in general, local maxima. However, since few restarts permit to find optimal
bids, the number of local maxima is not very high. Consequently, RSMDBIWRn

with reasonably small values of n can be considered to be an approximately optimal
method.

Remark 5 shows that almost every algorithm is optimal for NRI valuations.
Though we know the optimal bid vector in this case, this result confirms previ-
ous analysis. The MU optimality can be explained by the fact that bidding for
non-related items can be done independently from one another. Regarding the dif-
ferent variants of our algorithms, previous analysis showed that optimal bids are
found without restarts from any initial bid vector.

4.3 Time efficiency of MDBI variants

We discuss the complexity of MDBI in Section 3.3. The expression of this complex-
ity contains an unknown function C(ε, N). We wanted to find out the complexity
of MDBI variants in practice. We run experiments using the RSMDBI and VS-
MDBI algorithms as described in Section 4.1 but by varying the number of items.
We did not include RSMDBIWRn since the time needed to output the solution is
n T where T is the time needed by RSMDBI to terminate.

The time complexity of VSMDBI and RSMDBI appears to be linear in N . Since
the complexity of MDBI is equal to O(K N C(ε, N)), C(ε, N) is constant for VS-
MDBI given N . We also collected the average value of C(ε, N) from our experi-
ments and can highlight the following observations:

(1) Except for non-related items, the number of N -sequential improvements (C(ε, N))
increases very slowly. The largest range is [2, 4].

(2) The number of N -sequential improvements is always better for VSMDBI.

(3) C(ε, N) = 1 for VSMDBI and C(ε, N) = 2 for RSMDBI when items are
non-related.

Remark 3 is explained by the fact that VSMDBI realizes that the initial bid B0 =
Bϑ1 cannot be improved locally. RSMDBI will improve its initial bid vector and
reach the optimal one B∗ = Bϑ1 in one N -sequential improvements.
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Strategy Score

RSMDBIWR10 1940.29
BF 1909.42

RSMDBIWR5 1907.25

VSMDBI 1859.65
RSMDBI 1856.85

EVMU 1708.18

MU 1600.59

(a) SI

Strategy Score

BF 7693.41
RSMDBIWR5 7693.32
RSMDBIWR10 7674.74

VSMDBI 7513.83
RSMDBI 7434.81
EVMU 7413.88

MU 7202.51

(b) CI

Strategy Score

RSMDBI 3748.42
VSMDBI 3731.57

RSMDBIWR10 3725.22
RSMDBIWR5 3724.76

MU 3715.95
BF 3658.38

EVMU 3522.67

(c) NRI

Strategy Score

RSMDBIWR10 6898.97
BF 6871.01

RSMDBIWR5 6828.67

RSMDBI 6239.84
EVMU 6224.37

VSMDBI 5946.33

MU 5184.76

(d) RI

Table I. Cumulative profits of different algorithms.

5. CONCLUSION

The goal of this paper was to evaluate the relative performance of some existing
algorithms based on marginal utility calculations and variants of a more recent
algorithm on mulitidimensional bid improvement, MDBI, on a range of scenarios
involving bidding for bundles of items in simultaneous auctions. The scenarios
investigated include substitutable, complementary, non-related and random valua-
tions. We observe that the MDBI algorithm performs optimally with only a few
random restarts. In particular, it outperforms the marginal utility based algorithms
for substitutable and complementary valuations. For the MDBI algorithm, in most
cases it does not matter whether the initial bid vector is chosen randomly or based
on valuation of individual items.

The experiments in this paper were conducted on a small set of items. Part of
the reason for doing this is the exponential computational complexity of expected
utility based bidding schemes. The MDBI algorithm, on the other hand has only
linear complexity, a great advantage for its use in larger problems.
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