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We are interested in building systems of autonomous agents that can automate routine 
information processing activities in human organizations. Computational infrastructures 
for cooperative work should contain embedded agents for handling many routine tasks 
[9], but as the number of agents increases and the agents become geographically and/or 
conceptually dispersed, supervision of the agents will become increasingly problematic. 
We argue that agents should be provided with deep domain knowledge that allows them 
to make quantitatively justifiable decisions, rather than shallow models of users to 
mimic. In this paper, we use the application domain of distributed meeting scheduling to 
investigate how agents embodying deeper domain knowledge can choose among alter- 
native strategies for searching their calendars in order to create flexible schedules within 
reasonable cost. 
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1 Introduction 

We are interested in building intelligent,  au tonomous  software agents that can re l ieve 
human users f rom the burden o f  routine,  tedious informat ion processing activit ies in 

organizat ions.  As part  o f  that research agenda,  we present  in this paper  results o f  
our  invest igat ions in building au tonomous  agents for  the problem domain  o f  distrib- 

uted schedul ing.  In particular,  we have ana lyzed  in detail  the real- l i fe  domain  o f  

distr ibuted meet ing scheduling,  in which autonomous,  partially coopera t ive  meet ing  
schedul ing agents negotiate with each other  to schedule dynamical ly  arriving meet-  

ing requests  [17]. 
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Our approach has been based on developing and evaluating heuristics by which 
distributed agents can negotiate scheduling of meetings that arrive over time. Several 
aspects of our problem domain makes it necessary to investigate new heuristics rather 
than utilizing previous methods developed for traditional project scheduling problems. 
Most traditional scheduling methods are batch methods, where requirements for a set 
of tasks are presented to the system, and the goal of the schedule generator is to 
minimize some metric like tardiness, lateness, completion time, etc. A number of 
heuristics have been developed which can be used by a single scheduler to schedule 
a batch of tasks [7, 8, 10]. In our problem, meeting requests arrive dynamically over 
time and have to be processed on demand. This precludes the use of a batch mode of 
scheduling and necessitates a reactive mode of scheduling. Some recent results in 
matchup scheduling handles schedule disruptions by rescheduling on disruption to 
match up with a preplanned schedule [2]. We are particularly interested in very 
dynamic scheduling problems where generating a preschedule is infeasible, and 
reactive scheduling is the only feasible and effective approach to be used. 

On another note, we require that the multiple resources required by the tasks are 
managed by logically and physically distributed agents (no centralized control). In 
order to schedule a meeting, several distributed decision makers must agree on a time. 
In trying to schedule a meeting, each scheduling agent would like to reveal as little 
information as possible about the local calendar, the content of which is valued as 
private information. In the typical project scheduling problem, this would mean that 
a task requires multiple resources, where the status of each resource is known only to 
the agent who manages this resource and is not directly known to other agents. 
Additionally, information about a non-local resource can only be obtained through 
negotiation with the agent managing that resource. An effective negotiation mecha- 
nism will allow agents to converge on a mutually preferred schedule while revealing 
only minimal calendar information. Traditional scheduling literature does not address 
the privacy issue, and the status of all resources is assumed to be readily available to 
the centralized scheduler. 

Our domain also entails that a number of meetings are being scheduled concur- 
rently, and new meetings are arriving while previously received meeting requests 
are being scheduled. This means that the status of local and particularly non-local 
resources may change dynamically while negotiation over scheduling a meeting 
request is going on. Traditional optimization or scheduling approaches do not provide 
any effective mechanisms to address these problems. 

To be effective and useful in such domains, autonomous agents need to use a 
structured information exchange mechanism that helps them quickly identify solu- 
tions to individual and global goals, as well as provide the capability to explain their 
actions to associated users on demand. Our agents achieve these capabilities by using 
the contract-net protocol [22], which has been used widely to coordinate the activities 
of agents in distributed problem-solving systems. To effectively implement this 
protocol in the distributed scheduling domain, we have addressed each of the critical 
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problem-solving aspects of a contracting agent: how to structure and search for con- 
tract proposals in the solution space, how much information to exchange to quickly 
converge the negotiation process without incurring excessive communication cost, 
how to bid effectively against announced contracts, how to represent and reason about 
tentative proposals, and when to withdraw past commitments if faced with new con- 
tingencies. We have investigated heuristic strategy dimensions to control each of the 
above aspects of local problem solving [16]. 

The choice of strategy for considering time intervals for meetings will have 
numerous effects, including effects on the density of meetings in different parts of the 
calendar, the likelihood of scheduling future meetings of different types, the costs 
of scheduling, and the time needed to schedule meetings. More importantly, given 
targets for calendar densities and limited costs and time for scheduling, a calendar 
management agent should adapt its strategy choice based on the larger context of what 
it expects to schedule in the future and what it knows of the calendars of other agents. 
These adaptations might not be under the constant supervision of the user, and thus 
should be made by embedding domain knowledge (a rigorous model of the task) into 
the agent, rather than trying to capture a superficial model of the user acting in a 
sample of cases [12]. 

In this paper, we use a finite state automata model of contracting agents that 
enables us to precisely represent the processing stages, the resource requirements, and 
the interaction possibilities between meeting scheduling agents. From the model, we 
identify different forms of conflicts between scheduling processes that adversely 
affect the scheduling efficiency of the system. We then present search biases as 
heuristics to avoid such conflicts, and cancellation and rescheduling mechanisms that 
resolve conflicts when conflict avoidance is not possible. Our choice of the finite 
state automata model is motivated by the success of using this model in analyzing 
communication protocols [1,4] and in aiding distributed decision-making [5]. 

2 Problem specification 

Meeting scheduling is a common problem, and we are all familiar with a large number 
of constraints and preferences that can be used in scheduling meetings. Our goal in 
this work is not to solve all possible variants of the meeting scheduling problem. 
Rather, we would like to concentrate on what we believe is the core problem. Our 
work has concentrated on addressing this core problem as defined below, and else- 
where [16] we have suggested how our approach can be extended to address additional 
constraints that one may want to add on to this core problem. 

A meeting schedule consists of a group of meetings for a group of persons. Given 
a set of n meetings and k attendees (hosts and invitees), a scheduling problem is 
represented as S = (A,  M),  where A = {1, 2 ..... k} is the set of attendees and 
M = {ml, m2 ..... mn } is the set of meetings to be scheduled. A time slot is represented 
as a date, hour pair (D, H). A set of contiguous time slots is called a time interval. 
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A meeting is represented by a tuple: 

m i = (A i, hi, li, wi,  Si, ai, d i , f i ,  rfii), 
where 

Ai _C .:t 

hi E Ai 

li 

wi 

Si 

is a set of attendees of the meeting; 

is an attendee who will host the meeting 1); 

is the required length of the meeting in hours; 

is the weight or priority assigned to the meeting; 

gives a set of possible starting times on the calendar for the meeting. If 
I s/I -- 1, the meeting is said to be cons t ra ined  (the exact interval to be used 
for the meeting, if possible, is pre-specified); if S i includes all physically 
possible time slots on the host calendar, assuming that it was empty, that can 
accommodate a meeting of length I i starting at that slot, then the meeting is 
said to be uncons t ra ined;  otherwise, the meeting is semi -cons t ra ined ;  

a i is the meeting arrival time (when host is informed that it has to schedule the 
meeting); 

d i is the deadline by which the scheduling of the meeting has to be completed; 

f,. is the time at which the host f'mishes processing this meeting request; 

is the time interval for which the meeting m i is finally scheduled and is 
represented by an ordered set { (Di ,  H i ) ,  (Di ,  H i + 1) ..... ( D  i, H i + l i - 1) }, 
(here D i gives the date and H i gives the starting hour for which meeting m i is 
scheduled) if the meeting could be scheduled, and by O otherwise. 

Each scheduling process is associated with a personal calendar on which it sched- 
ules meetings. The calendar for attendee j E A ,  is represented as 

Cj  = {(Ds,  O, Xs,O), ( D s , l ,  Xs,l ) . . . . .  ( D s , £  - 1, X s , £ _ l ) ,  

(Ds+ l , O, Xs+l,O) ..... (Ds+ l, £ - I, Zs+l,c-I ) .... , 

(De,O, Ze,o) ..... (De,£ - I, Xe,r_l)}, 
where 

D s is the starting date of the calendar; 

D e is the ending date of the calendar; 

£ is the number of hours of work per day; and 

i if j ~ A i and ( D x ,  y )  E T i ,  

Zx,y  = nil otherwise. 

l) Note that hi may be the only member of the set Ai, which allows agents to reserve time intervals for 
themselves on the calendar. 
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This means a calendar slot for an agent contains a nil value unless a meeting is sched- 
uled in that hour for which this agent is an attendee. 

A meeting m i is said to be scheduled when the same time interval is marked with 
the meeting identifier on the calendars of all attendees of that meeting. Formally, 

Vj,  j 6 Ai,  and 3Dy, ~/Hz, <Dy,Hz) 6 T i ,  (Dy,  H z , i  > E Cj. 

The specification of the problem also involves the following constraints: 

1. Assuming that meeting scheduling takes time, the time the host becomes aware 
of the meeting must precede the deadline for scheduling it: a i < d i. Also, if meet- 
ing m i has been scheduled, it must have been scheduled by the deadline (3~ < di) 
and it must have been scheduled for some time after the scheduling decision has 
been made (3~ < (Di ,  Hi )  2)) .  

2. The time interval for which a meeting can be scheduled has to be contiguous and 
meetings cannot be split across days. Therefore, l i 6 { 1 . . . . .  £ }. 

3. For any individual j e A ,  let Mj  C_ M represent the set of scheduled meetings 
that j attends. Then, Vx,  y, mx E M j, my E M j ,  and x ~ y, Tx fq T r = ~ ,  meaning 
no individual can attend more than one meeting concurrently. 

4. h i is responsible for scheduling meeting m i and communicates with every j 6 A i 

( j  ~ hi) to negotiate for a mutually agreeable time for the meeting and is also 
responsible for finally assigning the meeting time T/. 

5. The basic unit of information that can be communicated between two individuals 
is a proposal, consisting of at most one date, hour pair. Let Ilixy denote the set of 
proposals that individual x sent to individual y in trying to arrive at a mutually 
agreeable time slot for meeting m i. If I I-lixyl > 0, then either x = h i or y = h i. 

6. Individual x cannot directly access the personal calendar of individual y, and 
relies solely on communication to obtain information about it. 

Two useful extensions to the meeting scheduling problem as defined above can 
be envisioned. One is to assign rooms for meetings by regarding the room as a pseudo- 
person and including it in the set A i for meeting m i. The other treats A i a s  being 
composed of groups of individuals such that exactly one person in each group is 
required to attend the meeting m i. The tuple representing meeting m i will also include 
ai  representing the actual attendees of the meeting[23]. 

Now we would like to emphasize the applicability of our work beyond the narrow 
domain of distributed meeting scheduling. Note that the above problem definition can 

2) (D1, Hi) < ( D 2 , / ' / 2 )  if either D 1 < D  2 o r  if both D 1 = D 2 and  H I < H  2 holds. Other inequalities are 
defined accordingly. 
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be easily changed to reflect a more general distributed task scheduling problem as 
below: A task schedule consists of  a group of tasks to be scheduled using a set of  
resources managed by a set of agents. Given a set of n tasks and k resources, a task 
scheduling problem is represented as S = (A ,  T) ,  where A = {al, a2 ..... ak} is the set 
of  resource managers (one manager per resource) and T = { ~'1, "r2 ..... ~', } is the set of 
tasks to be scheduled. A given task maps to a meeting, and a resource manager maps 
to a meeting scheduling agent in the above problem description. Given this mapping, 
the techniques developed in this paper to schedule meetings can be easily adapted to 
schedule dynamically arriving tasks requiring physically and/or  logically distributed 
resources. The limitation of our current approach is that it does not handle constraints 
between tasks. As such it can be used for distributed scheduling of unrelated tasks 
only. We are currently working on enhancing our model to process constraints between 
the tasks. 

3 Scheduling through contracting 

The agents use this representation as they engage in a distributed scheduling process 
based on the multistage negotiation protocol. The multistage negotiation protocol [6] 
is an extension to the contract-net protocol that allows for multiple rounds of nego- 
tiation before an agreement is reached between the negotiating agents. The protocol 
involves the following steps. On receipt of a meeting to schedule, the meeting's host 
searches its calendar for possible time intervals, and proposes the top n (n > 1) to 
invitees. Obviously, the larger n is, the more information about its own schedule it is 
revealing, but the more likely it is that it will successfully schedule the meeting in 
this round of the protocol (quantitative measures for this and subsequent tradeoffs are 
given in [18]). The goal is to reveal as little information while successfully schedul- 
ing the meeting. Agents have to balance the tradeoff between revealing private 
information and quickly finding an acceptable time to meet. Agents can be assumed 
to be only partially cooperative, i.e., invitees will respond only to proposals from the 
host, and will not be the first to volunteer local calendar information. Apart from 
serving the privacy concern, this also allows agents to concurrently process multiple 
meeting requests. If an agent was to transmit its entire calendar to another agent, it 
would have to wait for the latter to finish processing before it can do any further 
processing with it. 

An invitee, upon receiving a meeting announcement, will return a bid. The bid 
can either respond yes/no to each of the n proposed times (we call this a yes_no bid- 
ding strategy), or it can respond with m possible meeting times, where those times 
might overlap with the original n but can also counterpropose new alternative time 
intervals (we call this the al ternat ives  bidding strategy). The host, after receiving 
bids, can attempt to confirm an agreeable time if all of the agents have indicated that 
a particular time is free for each of them. Otherwise, the host will repeat the process with 
a new announcement message giving a new selection of n meeting times. 
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3.1 D M S  process  model  

In this section, we develop a finite-state automata model of the meeting schedule 
processes. The purpose of the model is to succinctly represent the multistage negotia- 
tion protocol used by the processes to schedule meetings, as well as to identify the 
sources of interaction between different scheduling processes. 

To model the DMS processes for this task, we have extended the finite automata 
framework developed by Casavant and Kuhl [5] for modeling communicating proc- 
esses. To apply their framework, we have had to assume that the graph representing 
individuals as nodes is fully connected (which means that each individual can talk 
directly with any other individual without going through a third party). In the actual 
network implementation of our system, the scheduling agents communicate with each 
other using electronic mail messages. Since the processes are directly communicating 
with each other and messages are not being relayed, from a logical point of view they 
are fully connected. If another connection topology is used, however, the only effect 
on the system will be minor reduction in throughput as long as the messages are 
delivered to their recipients without any appreciable delays. 

Casavant and Kuhl [5] represent each node by a finite automaton. This hides the 
details of local decision-making and how different meeting requests for a single indi- 
vidual compete for resources. Therefore, the assumptions they make in their model 
are inadequate for our domain. We circumvent this by representing meeting m i by I Ail 
processes, one for each attendee of the meeting. The process corresponding to the 
meeting m i at attendee j is modeled by the finite automaton (FA) Mij, whose formal 
definition is as follows: 

where 

Mij = (Q(i, j ) ,  Y.(i, j), A(i, j ) ,  c~ij, Soij ), 

Q(i, j )  = Qin,(i, j )  × Qext(i, j )  x R(i, j )  × P(i, j )  x Pr(i, j ) z ;  z - - IA i l ,  

Z( i , j )  = Prin(i , j)  z x Qrext(i , j)z;  z =[Ai[ ,  

A(i, j )  = P(i, j )  × Qext (i, j ) ,  

~ij = Q(i, j )  × z(i, j )  --> Q(i, j ) ,  

Soij = initial state of Mij 

and aint represents the internal component of the state of M 0 not accessible to any 
other process; Qext represents the component of state exchanged with other processes; 
R(i, j)  represents the calendar resources that can be used by the process (not ex- 
changed with other processes); P( i, j )  ~ { gs o, gS l . . . . .  P d, Pa+l} represents the current 
phase  or the status of the scheduling process corresponding to meeting m i for attendee 
j ;  Pr( i , j )  z is the process Mij's knowledge about the phase of each of the other 
processes involved in scheduling meeting mi; erin(i, j)z is the actual current phase of 
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each of the other processes, that is, part of the present input to the process MO; and 
Qrext(i, j )  represents the most recent knowledge Mij has about the states of the other 
processes scheduling meeting m i. 

A process Mij will interact with other processes in two possible ways. First, 
because attendees of the same meeting must pass information around to converge on 
a time, Mij will interact via communication with the other Mik- the processes for 
other attendees of the same meeting m i. Second, because the same user has separate 
processes for scheduling the different meetings he or she will attend, Mij will interact 
with other Mtj for other meetings m t - this interaction (we refer to this form of 
interaction as conflict) takes place in the processes' contention for the shared calendar. 

3.2 Interaction via communication 

One type of critical interaction arises through communication between processes for 
different attendees that are trying to schedule the same meeting. As mentioned before, 
the constraints on the problem allow explicit communication between individuals as 
the only means by which information can be acquired to develop more complete global 
knowledge. This type of interaction then plays a crucial role in the quality of the 
local decision-making procedures which utilize the local view of global knowledge. 
Modeling this type of interaction is achieved through the use of phases and properly 
specifying the set of states that the finite automata representing processes can have, 
together with precisely formulating the state transition functions. 

The following represents the complete set of states for a DMS process using our 
protocol: 

Q = {Qd, Qg, Qa, Qr, Qv, Qf}, 
where 

• Qd is the decision state, which assesses the proposals generated and received so 
far, and decides either that a mutually proposed interval exists and should be 
verified, or that new proposals should be generated. 

• Qg is the generative state, in which a process produces either proposals or bids 
(depending on whether it represents the host or an invitee of the meeting). 

• Qa is the announce state, in which a process actually communicates proposals or 
bids to other cooperating processes (processes involved in scheduling the same 
meeting). 

• Qr is the receive state, in which a process waits for proposals or bids to come in 
from other cooperating processes. 

• Qo is the verification state, where a process evaluates whether a mutually pro- 
posed time interval can be actually used for scheduling the meeting. 

• Qfis the f inal  state, which a process enters when it succeeds or fails to schedule 
a meeting. 
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invite~ 

host~ 

Figure 1. A finite state automaton representing the meeting scheduling processes. 
A host process starts in state Qd, while an invitee process starts in state Qr. 

The finite state automaton corresponding to host and invitee processes for a meet- 
ing is presented in figure 1. Note that the host process for a meeting starts out in state 
Qd, while invitee processes for the same meeting start out in state Qr. 

A process in any state has a phase that represents the current information 
exchange with other processes. After a number of phase changes, the process might 
change its externally-known state aext, which can prompt a change in the states of 
other processes interacting with this process. Let us examine the components of 
process phases in a little more detail to capture the semantics of the process. The 
degree of information exchange at a particular state is represented as the subscripts of  
the phase components. The set of  transitions F = {~0 ~ ~1 ..... ~d-1 ~ ~d} repre- 
sents the accumulation of more and more information by a process. Each such 
transition is triggered either by the arrival of  a proposal message from another process 
or by some local decision-making. The transition Pa ~ ~d÷l reflects the decision 
which will either result in re-initiation of information gathering at the same state 
(transition Pal÷ 1 ~ ~0) or a change of state of the process. Whereas phase transitions 
are used by Casavant and Kuhl [5] only to represent exchange of information between 
modules, we use phase transitions to additionally represent progress in local informa- 
tion processing. 

We will use two examples to clarify the usefulness and necessity of phases in 
representing the scheduling processes: 

1. Consider a host process that has just sent messages to the other attendees 
proposing possible meeting times. The host process is in state Qr, waiting to 
receive information back from the invitees. As messages come to it, the host 
changes phases (such as from the phase of waiting to hear from i attendees to 
waiting for i -  1 attendees). These phase transitions constitute the set 1-" as 
mentioned above. The final phase transition for a state (such as hearing from the 
last attendee) causes the process to change states (such as moving into state in 
which it evaluates the messages it has received). This transition corresponds to 
the transition ~d ~ ~d+l as mentioned above. 
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2. Consider a host (invitee) in the generat ive state Qg. It is trying to produce n 
proposals (bids). After generating the ith of the first n -  1 (for n > 1) such pro- 
posals (bids) there is a phase change from ~'3 i "--ff ~'0i+I within state Qg. When the 
last proposal (bid) is generated, the phase transition ~n ~ gJn+ l results in a change 
of state of the process to the announce state Qa. 

3.3 Conflict  through shared resources 

In this section, we identify different modes of interaction between two processes that 
are sharing the same resource (an agent's calendar) to schedule different meetings. 
Scheduling inefficiency arises due to interaction via shared resources, when two such 
processes try to use overlapping time intervals to schedule their respective meetings. 

The particular scheduling strategy choices that play a major role in affecting these 
types of interaction are the choice of the commi tment  s trategy and the choice of 
search biases in scheduling meetings. While commitment strategies affect the fre- 
quency of conflicts between concurrently active scheduling processes, search biases 
affect the frequency of conflicts between new processes and processes which have 
already finished scheduling their meeting requests. 

The choice of committing or not committing to a proposed time interval amounts 
to either blocking or not blocking valuable calendar resources until complete agree- 
ment is reached. Commitment can cause non-optimal schedules as some meetings 
block time intervals that cause the scheduling of other meetings to be abandoned due 
to lack of uncommitted times within the meeting's constraints. In some instances, 
those blocked intervals might later be released. On the other hand, blocked time 
intervals prevent attempts to propose overlapping time intervals for two different 
meetings, which can save scheduling time and the amount of information exchanged 
to schedule meetings. Although the primary effect of commitment is on the success of 
scheduling meeting requests, this strategy choice also affects the number of iterations 
taken and proposals sent to schedule meetings. 

We can formally represent the resource requirements of process Mij as a 4-tuple, 

where •(i, j )  = (vii ,  Pij, bij, rij ), 

• vii represents the set of all viable time intervals that could have been proposed for 
meeting m i by individual j. It is given by the set of all time intervals of length I i 

whose starting slot belongs to Si (Si is the set of possible starting times on the 
calendar for meeting i). 

• Pij represents the set of time intervals that have been proposed  by individual j and 
are still being considered for meeting m i. Pij C_ vii, since only viable time inter- 
vals are proposed. 

• bij represents the set of time intervals that have been blocked for probable use by 
individual j for meeting mi. These time intervals are under active consideration, 
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but at most one of these will be used for the meeting, bij C_ Pij, since only a subset 
(possibly empty) of the proposed time intervals can be blocked. 

rij = "if/if m i has been scheduled (represents the time reserved for the meeting), 
and is O otherwise, rij C Ply, since the finally reserved time interval for a meeting 
is one on which all attendees have agreed and hence must have been proposed. 

For process Mij, vii represents the static part of resource requirement, Pij and bij 
are the dynamic parts, and, assuming no cancellation, rij changes at most once (from 
T / =  O to "J'~i ~: O if Pi = 1) during the lifetime of  the process. 

The following kinds of  conflicts can take place between two processes &Ix, j, My,j, 
x :~ y, corresponding to meetings in which an individual j is participating: 

possible: 3X,  Y, X E Pxj, ( 3Y, Y E PrJ), X tq Y ~ 0 .  If overlapping time intervals 
have been proposed for different meetings by the respective processes, 
there is a possibility that both these meetings could be scheduled for 
these time intervals in which case one of  the processes will fail to sched- 
ule its meeting. 

actual:  ~/X, 3Y,  X E Vxj(3y, Y E rrj), X fq Y :P 0 .  This scenario corresponds to 
the case where a request for a meeting mx comes in such that all viable 
time intervals corresponding to that meeting overlap with reserved time 
intervals for some other meetings (my). In such a case, the processes Mxj 
and Mr) are actually competing for overlapping intervals of  time and this 
results in a failure to schedule meeting mx (if no cancellation and re- 
scheduling of meetings is allowed). 

preemptive: 3X, Y, Z, X E vxj, (3y, Y E by j, X N Y ~ fD) A -~ (3z,  Z E rzj , X N Z =it= 0 ) .  
This scenario corresponds to the case where a request for a meeting m x 
comes in such that at least one viable time interval corresponding to that 
meeting overlaps with a blocked time interval for some other meeting 
(my), but does not overlap with any reserved time intervals. If  VX,  3 Y, Z, 
X E vxj(3y,  Y E byj, X N Y 4: 0 )  A -~ (3z,  Z E rzj, X M Z ¢ O),  it is not 
possible to schedule m x, which affects the success ratio of the schedul- 
ing strategy. 3) 

From the above analysis we can see that scheduling efficiency can be increased 
by using heuristic strategies that eliminate or restrict harmful interactions between 
concurrently active scheduling processes working on different meetings. In a previous 
paper, we have argued on using adaptive commitment strategies to reduce preemptive 

3) Note that the scheduling process does not wait to see if the blocked time interval is actually used or 
not, but simply signals a failure to schedule the new meeting. This design decision was incorporated 
to prevent deadlocks. Of course, the process could time out after some prespecified time period, but 
then the scheduling process will slow down considerably. Various other implementation "hacks" can 
also be used to alleviate this problem. 
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and possible interactions between scheduling processes [21]. In the following section, 
we experimentally evaluate alternative search biases that reduce the frequency of the 
different kinds of conflicts mentioned above. But no search bias can guarantee the 
elimination of all conflicts. This means that under certain circumstances, we have to 
resort to canceling previously scheduled meetings to accommodate newly arrived 
meeting requests. We present such a cancellation algorithm in section 5. 

4 Avoiding conflicts through proper search bias 

Our earlier work [ 18] tacitly assumed that meetings should be scheduled as early as 
possible, and yielded solutions where calendars tended to be dense at the beginning 
and sparse at the end. This "lumping" has the disadvantage that it places uneven 
demands on the user, and that it cannot easily accommodate what we call high- 
priority short-notice (HPSN) meetings. The latter means that, if the user suddenly 
learns of a meeting that must be scheduled very soon, it is likely that there are no 
open slots for this meeting, leading to costly rounds of cancellation and rescheduling. 
Hence, this search bias gives rise to high actual conflicts for HPSN meetings. 

More evenly loaded calendars are likely both to place more steady demands on 
users and to accommodate HPSN meetings more easily. Building such a calendar 
means that, when scheduling a new meeting, preference should be given to slots that 
are in the least dense portion of the calendar. Unfortunately, search with this criterion 
is not nearly as systematic as with the previous (prefer early) criterion, because, while 
all agents will agree on what is earlier or later (so that they all progress through their 
calendars the same way), the agents will generally disagree on where the least dense 
parts of the calendar are, since each has a different calendar with different meetings 
scheduled in it. 

Moreover, while the resulting schedule will more likely be able to accommodate 
HPSN meetings, it will have more trouble scheduling long meetings. That is, sched- 
uling meetings in less dense parts of the schedule tends to fragment available time 
into smaller and smaller pieces: even if an agent has n hours of free time, those hours 
might be broken into short spans across several days. Hence, this search bias gives 
rise to higher actual conflicts for long duration meetings. Note that a preference for 
earlier meetings would not have this problem, since it will tend to leave longer 
contiguous blocks of time at the end of the calendar. 

The upshot is that the decision about what to value most in a solution depends on 
factors including: preference for evenly-loaded schedules versus wanting to get things 
out of the way early on; likelihood of needing to schedule HPSN meetings in the 
future versus likelihood of needing to schedule long meetings in the future; and 
desired systematicity in the scheduling process itself, with resulting implications for 
computation and communication overhead. In the rest of the paper, we go beyond 
these untried qualitative statements of tradeoffs, and focus on validating and quanti- 
fying them to develop guidelines for choosing among scheduling strategies for 
adaptive surrogate agents. 
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4.1 Types of  search bias 

How should we bias the distributed search process to yield desirable solutions? We 
view a search bias as an a priori measure of the goodness of certain particular solutions 
being evaluated. In this respect, different search biases can be related to different 
Value Goodness measures [11], as used in the constraint satisfaction literature. We 
now present three different search biases, identifying how they work, and the types of 
solutions (calendar profiles) they generate: 

Linear early (LE): This search bias was used in our earlier work to produce calen- 
dars with a density profile (distribution of meetings) where the number of free 
intervals of any given length is very low close to the current date on the calendar, 
and increases steadily as we look further down. With this search bias, an agent 
attaches increasing goodness values to intervals earlier in the calendar, i.e., given 
a meeting, the agents try to schedule the meeting as early as possible. The search 
bias is implemented by making an agent start searching the calendar at the 
earliest possible scheduling opportunity, skipping over any intervals overlapping 
with already scheduled meetings, and negotiating with the earliest free interval 
on the calendar long enough to accommodate the meeting. This search bias can 
be likened to the First Fit memory allocation scheme [15]. 

Linear least dense (LLD): The resulting schedules produced with this search bias 
will have a density profile in which the number of free intervals for any given 
length is approximately constant across the calendar length. With this search bias, 
an agent tries to schedule a meeting in the least dense part of its calendar. The 
search bias is implemented by the host of the meeting ranking all the empty 
intervals on its calendar long enough to accommodate a given meeting (and 
within the window of acceptable times for the meeting) by a function that measures 
the number of free calendar slots around that interval. The agent then steps down 
this ranked list and negotiates with other attendees of the meeting until it can 
schedule the meeting. This search bias can be likened to a local form of Worst Fit 
memory allocation strategy [15]. 

Hierarchical (H): This is another method of producing even density profiles across 
the calendar. With this search bias, an agent tries to schedule a meeting in the 
least dense part of the combined search space of all the attendees of the calendar. 
The search bias is implemented by building an abstraction hierarchy atop the 
linear calendar for each meeting-scheduling agent. At each node in the hierarchy, 
agents keep a record of the number of intervals of different length free below that 
node in the hierarchy. The calendar space lends itself to a very natural hierarchy 
of hours, days, weeks, etc., and the agents participating in a meeting can first 
identify a good week to meet in, then identify a good day within that week, and 
finally an actual interval within that day. Given a meeting of some particular 
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length to schedule, the host asks for and receives information from all the invitees 
about how many intervals of that length are open at each node (e.g., at each week) 
of the highest level of the hierarchy. It uses these numbers to compute the prob- 
ability of scheduling the meeting under each of these nodes, ranks the nodes, 
elaborates the best one, and proceeds to repeat the process for the next level of 
the hierarchy under the elaborated node. At the ground level, information exchange 
takes place like the LE scheme. Backtracking occurs if a particular portion of the 
ground level being elaborated contains no solution to the scheduling problem. In 
this paper, the levels of the hierarchies used by the agents correspond to days and 
hours only. Agents first negotiate about the likelihood of scheduling a meeting on 
different days, then choose the most likely day and start LE negotiation within 
that day. The host may fail to schedule the meeting in the most likely day, and 
will then backtrack to the next most likely day. This search bias can be likened to 
a global form of Worst Fit memory allocation strategy (in the sense that the fit- 
ting takes place in the most free part of the combined search space of all the 
participants of a meeting). 

4.2 Expectations 

To verify that these biases do perform as we anticipate, we need to be clearer about 
exactly what we expect. To do this, we have to clarify what we should measure to 
assess the performance, both in terms of acceptable solutions and in terms of 
computational and communication costs. 

The evaluation metrics that we will be using are the following: 

Communication cost (CC): Communication cost is measured by the average number 
of information packets exchanged to schedule a multi-agent meeting. One infor- 
mation packet consists of a proposal from a host or an invitee. In the case of H 
search bias, while negotiating at a non-leaf node of the hierarchy, a node-number 
and meeting-likelihood pair is considered an information packet. This measure 
provides us with an estimate of the amount of bandwidth required to schedule 
meetings. 

C = 
nm 

where n = I M I ,  k = I A I, and 

Cij = ~ I Ilijyl, 
Vy, y~Ai andj~y 

where I-Iixy denotes the set of proposals that individual x sent to individual y to 
schedule a meeting mi, and nm is the number of multi-agent meetings scheduled. 
This measure is used to distinguish otherwise equivalent biases by preferring 
those which requires less communication bandwidth. 
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Iterations (I): Iterations required to schedule a meeting is measured by the average 
number of rounds of negotiation entered into by the participating agents in 
scheduling a meeting before a meeting is scheduled, or it is recognized that the 
meeting cannot be scheduled. This measure indicates the amount of time required 
to schedule a multi-agent meeting. 

Slots Searched (SS): Slots searched to schedule a meeting is measured by calculat- 
ing the sum of the number of possible intervals on the calendar looked at by the 
participants while trying to schedule a meeting. The measure is an average over 
all the meetings scheduled. It is indicative of the search complexity (and corre- 
spondingly, the time taken) for finding intervals to propose. 

Meeting Hours Missed (MHM): Meeting hours missed represents the success of 
scheduling the meetings requested so far, and is calculated as the number of 
requested meeting hours per agent that could not be scheduled. 

where 

/1 

~ i :  1 li * I Ail  * (1 - Pi ) 
MHM = 

IAI 

1 if m i has been scheduled, 

Pi = 0 o t h e r w i s e .  

Density Profile Characteristics (DPC): The density profile characteristics are plots 
that display the variation of the number of free intervals of different length over 
the length of the calendar. The numbers are averaged over all the agent calendars. 
This measure is indicative of the spread of the meetings scheduled on the calendar, 
and can be used to predict the success of scheduling different kinds of meetings 
on the given calendar. 

The first three of these criteria measure the cost incurred in the process of scheduling 
the meeting, whereas the last two criteria reflect the quality of the schedule generated 
both in terms of how well it has scheduled known meetings and how likely it is to 
schedule future meetings. We now briefly present our expectations of how different 
search biases will perform on the different evaluation criteria, and also provide brief 
intuitions behind these expectations. 

The LE search bias should have a negligible MHM value so long as all the meet- 
ing requests received have a large window for scheduling. This is because the search 
bias tends to lump the meetings together thus leaving space for other meetings to be 
scheduled at the end of the calendar. By selecting the a l t e r n a t i v e s  bidding strategy, 
large portions of the search space not containing solutions to the scheduling problem 
can be quickly pruned [17], leading to inexpensive I and CC measures. As the number 
of meetings scheduled grows, more and more intervals need to be looked at before 
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finding a free interval, and hence the SS measure would become increasingly costly. 
In practice, we can reduce the local search cost by caching open intervals indexed by 
meeting lengths. If  proposed time intervals are committed or when meetings are 
canceled, however, the indexes have to be continually updated. This incurs additional 
overhead, and should be added to the processing cost incurred by the L E  search bias. 
From what we have discussed before, it can be inferred that with the LE  search bias, 
the density profile characteristic curves will be low at the start of  the calendar and 
rise towards the end of  the calendar. 

The L L D  search bias fragments the search space as it places meetings in the least 
dense parts of the calendar. Therefore, as the number of hours scheduled 5 t  approaches 
the total length of  the calendar L, it is more likely that with the L L D  search bias some 
meetings (particularly long ones) cannot be scheduled, resulting in M H M  > 0. This 
reasoning also holds for the H search bias. The LLD search bias should be more 
expensive in iterations compared to the other two search biases because counter- 
proposals from invitees cannot help to eliminate portions of search space from 
consideration. The SS measure is expected to be extremely high as all possible slots 
on the host 's calendar are looked at and ranked before negotiation begins 4) The 
density profile characteristics produced by the LLD search bias should be even across 
the calendar. 

The H search bias adds communication cost and iterations during the negotiations 
at the non-leaf nodes of  the hierarchy. The added communication cost is considerable 
because for each node in the hierarchy, the host has to receive information for each of 
the nodes below that node from all the invitees (e.g., for a given week, the host needs 
information about each day in that week from all of the invitees; since information 
about only one node is sent in a packet, this implies that a lot of  packets have to be 
communicated). The expected benefit is that of quickly identifying portions of  the 
search space that are highly likely to contain a solution. It would be instructive to see 
whether the one-time cost of  information exchange at abstract levels can be offset by 
efficient searching of  the ground space. M H M  values should be similar to the L L D  
case. The slots searched using this search bias should be few, as the information 
contained in the hierarchy quickly helps focus on mutually free intervals on the 
calendar. The density profile characteristics should be smooth across the calendar. If  
individuals were not reserving times for themselves on the calendar, the smoothness 
of  calendars produced by the H search bias would have been more than the smooth- 

4) These intuitions match closely with the findings of researchers in operating systems, where the First 
Fit memory allocation strategy has been found to produce faster search (corresponding to less SS) and 
better storage utilization (maps to less MtlM) over the Worst Fit memory allocation strategy [15]. 
Here also, we can use caching methods to reduce the cost of local search, but the cost of bookkeeping 
can become noticeable as in the case of the LE search bias described above. Note though, in this work, 
we are more concerned about a number of other criteria including the ability to generate desired den- 
sity profile characteristics, and hence the LE bias is not always preferable to the LLD or H search 
bias. 
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ness of calendars produced by the LLD search bias. This is because with the LLD 
search bias the meeting is placed in the most free part of the host's calendar. Since in 
a group each agent is more often the invitee rather than the host to a meeting, an 
individual agent does not get sufficient opportunity to smooth out the calendar. Using 
the I-I search bias, however, every agent to a meeting has the same influence on where 
the meeting gets scheduled. Averaged over a number of meetings, this allows agents 
to generate evenly loaded calendars. In our experiments, however, agents can sched- 
ule meetings with themselves, and this allows even the LLD search bias to smooth 
out calendars as well as the I-I search bias. 

4.3 Experimental results and analysis 

In this section, we first describe the parameters used in setting up the experiments, 
then present the experimental results obtained by running experiments with the 
different search biases on identical meeting requests. 

We report results from two different sets of experiments involving two different 
groups, where a group is characterized by the number of individuals scheduling meet- 
ings and the length of their corresponding calendars. For the smaller group, we consider 
three agents with 5-day calendars. The corresponding numbers for the larger group 
are 10 and 14, respectively. In both cases, each day consists of 9 hours. The agents 
start with an empty calendar and are given a number of meetings to schedule. The 
meeting requests are assigned such that if all the meeting requests get scheduled, each 
of the agents will have H hours reserved in their calendar. Given a total number of 
L = 45 (126) hours on each agent's calendar for the smaller (larger) group, we have 
run experiments varying H from 10 up to 40 (70 up to 130), in steps of 5 (10). All 
meetings are totally unconstrained in that it is acceptable to schedule any of them in 
a free interval anywhere over the length of the calendar. 5) For each search bias, and 
for each value of H ,  the results reported are averaged over 1000 runs of randomly 
generated meetings. The meeting lengths are chosen from a discrete probability 
distribution assigning the probabilities 0.3, 0.25, 0.2, 0.15, 0.05, 0.05, 0.0, 0.0, and 
0.0 to meeting lengths 1, 2, 3, 4, 5, 6, 7, 8, and 9 hours, respectively (this distribution 
is somewhat representative of meetings in real life; shorter meeting lengths are much 
more common than meetings that occupy most of the day). The number of attendees 
for a meeting is picked using a uniform distribution. In the simulation, we schedule 
meetings one at a time, that is, a host is given a meeting to schedule, and only after 
the scheduling process for that meeting is terminated, do we present the next meeting 
to be scheduled to an agent. Although one of the primary benefits of a distributed 
formulation of the scheduling problem is the increased throughput obtained by 
concurrent processing of multiple tasks, for the following experiments we use a 

5)This means that there is no particular bias towards either HPSN meetings or for meetings in the future. 
This is because the meetings can be scheduled anywhere on the calendar. 
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sequential mode to identify the effects of search bias independent of concurrent 
processing issues. The performance measures reported are those mentioned in section 
4.2. In the following, we will briefly highlight our findings from experiments with 
the smaller group, followed by a more detailed analysis of the experiments with the 
larger group. 

For the smaller group, the number of iterations and the communication cost ob- 
tained with the LE bias is low and varies little with varying 2/ .  Communication cost 
is roughly 3 times the number of iterations, because multi-agent meetings can involve 
either 2 or 3 persons, and the corresponding communication cost per iteration of the 
scheduling process is 2 and 4, respectively (more generally, for a k person meeting, 
the communication cost per iteration of the normal information exchange phase of 
our negotiation protocol is 2 ( k -  1)). Low values of these metrics can be attributed 
partly to the use of an effective bidding strategy (alternatives option). The fact that 
the LLD bias performed only slightly worse on these metrics indicates that other 
reasons contributing to these results include the relatively empty calendars available 
to the agents to process meeting requests, the small number of agents, and high 
percentage of multi-agent meetings (which means that the calendars fill up similarly). 
This analysis prompted us to experiment with larger groups to see how these biases 
scale up. The performance of the biases on other metrics were similar for the small 
and the large group; for these results we refer the reader to the following discussion 
of our experiments with the larger group. Another noteworthy observation from this 
set of experiments was that LLD bias took fewer iterations to schedule meetings than 
the H search bias while producing similar DPCs. So, for small groups, the extra itera- 
tions in descending the hierarchy with the H search bias is not recuperated from more 
effective search of the joint calendar space. Because of the relatively small search 
spaces, the LLD search bias seems to be able to produce desired DPCs without losing 
out on other performance metrics. 

Results from experiments with the larger group are presented in figure 2 and 
figure 3, which display the performance of the different search biases on the metrics 
evaluating the actual scheduling process and the metrics evaluating the resulting 
calendar density profile respectively. The latter presents the results of experiments 
with .7-/'= 100 (graphs for other values of .7-/ have similar characteristics). In these 
experiments, 75% of the meetings required the attendance of two or more agents. 

In sharp contrast to the results obtained with the smaller group, in experiments 
conducted with the larger group, the H search bias schedules meetings quicker than 
the LE or LLD search biases. This is due to the fact that the H search bias can better 
handle disparities between attendee calendars. When attendee calendars are stacked 
up differently, the H bias uses the hierarchical information exchange to quickly 
identify parts of the calendar that are likely to contain a mutually acceptable interval. 
The other search biases waste more time eliminating unlikely candidates from the 
search process. This is particularly true for the LLD search bias, in which case the 
host does not receive informative replies from the invitees to aid the negotiation 
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Figure 2. Average and standard deviations of the LE, LLD, and H search biases on the 
metrics evaluating the scheduling cost (MHM, CC, I, and SS) as .?-/'varies from 70 to 130. 

process. The number of iterations taken to schedule meetings with the H search bias 
is almost constant over 9-/'. One of these iterations is spent to gather information about 
the density profiles at the day level of  the hierarchy from the invitees of a multi-agent 
meeting. This particular iteration also incurs a heavy communication cost as the 
number of  information packets sent by each invitee is equal to the number of  days in 
the calendar, as opposed to sending only one packet for any other iteration. As such, 
the communication cost is considerably higher than in the other two cases. 

When we look at the slots searched metric for the LE bias, we see a linear 
increase with 9/'; this was anticipated because with more hours full on the calendar, 
the agent has to search progressively further to find an empty interval on the calendar. 
As expected, the slots searched by the LLD bias is extremely large: all possible inter- 
vals are looked at to determine if they can accommodate the given meeting. Only the 
host is involved in this ranking of plausible intervals; otherwise the value for this 
metric would have been much higher. The number of slots searched by the H search 
bias, on the other hand, is extremely small as the information maintained in the 
hierarchy helps in quickly identifying potential intervals to be used for a meeting. 
The values for this metric grows slightly with increasing 9/ - to  reflect increasing 
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Figure 3. Number of  free intervals of different lengths available in 
calendars generated by LE, LLD, and I-I search biases for 3-/" = 100. 
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search at the ground level by an invitee to come up with an alternative bid (or 
counter-proposal) to a proposal from the host, as more and more hours on the calendar 
are reserved for other meetings. 

The observed metric of  meeting hours missed with different search biases is as 
expected, since agents start failing to schedule meetings only when 3-/ is close to L. 
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Most of the meetings missed are either multiple agent meetings or are long meeting 
requests arriving at the end of the scheduling run. There is no significant difference 
in the performance of the H and LLD search bias on this metric. But using the two- 
sample t procedure [13], we find the performance of these two search biases and the 
LE search bias is significantly different, at least at the 99% confidence level under all 
load conditions we experimented with. The value for this metric is noticeably greater 
for the LLD and H bias than that for LE bias for Y-/" ranging from 80 to 120. In its 
attempt to evenly schedule meetings across the calendar length, the LLD search 
bias ends up fragmenting the calendar space, and hence is unable to accommodate 
a percentage of long meetings as .7-/ increases above a threshold value. An interesting 
result of our experiments with the two groups was that, although the LE search bias 
leads to smaller values of meeting hours missed in the larger group, the proportional 
savings obtained are far less than in the smaller group. This is because even though 
each agent is relatively free towards the latter part of their schedules when using the 
LE bias, individual schedules can differ significantly in the exact intervals that are 
free in these portions. As such, even with space compaction, short meetings with large 
numbers of attendees may not get scheduled. 

Figure 3 shows that when using the LE bias, more and more intervals of any given 
length are open on the calendar as one proceeds from the front to the end of the 
calendar. This means that, as per expectation, this particular search bias is scheduling 
most of the meetings grouped together near the start of the calendar. On the other 
hand, the LLD and H search biases are able to deliver on the promise of even density 
profiles across the length of the calendar. Results are better than expected for the LLD 
bias because this bias only balances the host's calendar, but that seems sufficient in 
balancing each agents' calendar since everyone gets to be the host with equal fre- 
quency, and more importantly, they have a number of meetings with themselves which 
smooth out their respective density profiles. 

4.4 Observations 

There are several important observations to be made given the results and analysis of 
the last section; some of these reinforce our expectations, while a few provide new 
insights into the properties of the search biases. In the following, we highlight our 
observations for each performance metric. Both LLD and H search biases generate 
even density profile characteristics (DPC) across calendar lengths in contrast to the 
skewed density profiles produced by the LE search bias. This is an experimental 
confirmation of the characteristics these search biases were designed to generate. 
Observations generally true for all the search biases considered are: 

1. for any given -q-/, the number of open intervals increases with decreasing length 
of the intervals (in a free interval that can accommodate a long meeting, we can 
schedule a number of smaller meetings), 
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2. the number of intervals open for a given length is a non-increasing function of .7-/" 
(this is observed by comparing different graphs like figure 3 with varying :7-/'). 

The LE search bias leaves room for scheduling long meetings, and hence, 
particularly in cases where :7-/" is close to L, results in fewer meeting hours missed 
(smaller MI-IM values) than the LLD and I t  search biases. From figure 3, we find 
that the number of open slots for longer meetings at the end of the calendar 
produced by the LE search bias is not as high as expected compared to those in the 
calendars produced by LLD and H search biases. This is because the LE search bias 
ends up scheduling much more hours on the calendar compared to the other search 
biases, and hence has less space to accommodate more meetings. The purpose of 
building evenly dense profiles is to retain the flexibility of scheduling HPSN meetings. 
If that flexibility is obtained at the price of being unable to schedule some regular, 
run-of-the-mill meetings, then that is often too high a price to pay. So, depending on 
the importance of HPSN meetings, one may either want to use the LLD or H search 
biases in favor of the LE search bias across the range of .7-/ values, or to H values 
below a threshold only. The behaviors of the different search biases on the MI-IM 
match our expectations developed in section 4.2. 

Although meetings can be quickly scheduled (smaller I) in small groups by using 
the LE search bias, as we consider larger groups, it is clear that the I-I bias is the most 
expedient bias for scheduling meetings. Our further studies [20] have shown that, 
using probabilistic methods, we can build a scheduler that can predict the number of 
iterations required for each of the search biases given current information about the 
calendar densities of the participants, allowing dynamic and quantitatively informed 
adaptation of the search bias over time. Communication cost (CC) required to sched- 
ule meetings is greater for I-I search bias than the other two (of which, the values for 
LLD are higher than those for LE search bias), because of the increased overhead of 
the first iteration (as information about more days needs to be exchanged). This prob- 
lem may be solved by multiple levels of the hierarchy; if 10 days were separated into 
two weeks, and a solution was found in the least dense of the two weeks, communi- 
cation cost for the 5 days in the other week could be saved. 

In terms of the slots searched metric (SS), the H search bias is a sure winner. 
This metric measures the amount of time spent in local search by the agents to find 
suitable time intervals for meetings. In our past work, we have noted that, in situa- 
tions where concurrent scheduling of several meetings is taking place, greater time 
spent in local search will lead to increased probability of mutually harmful interac- 
tions between scheduling processes that share the same calendar [21]. So, although 
the significance of this metric is not apparent in this simulation (with no concurrent 
scheduling), in real-life this metric will greatly impact the other cost metrics. 

For all the search biases considered, we notice a decrease in scheduling efficiency 
(as measured by the meeting hours missed metric) with an increase in the size of the 
group. However, in larger groups (with more agents, longer calendars), the H search 
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bias takes the least number of iterations, provides more flexibility, and does not 
significantly sacrifice success rate of ordinary (non-HPSN) meetings (as compared to 
the LE search bias). Hence, we prescribe a switch in search bias from LE to H as the 
group grows. The use of LLD should be limited to situations where, even though the 
group is small, HPSN meetings are fairly common. 

Given the above tradeoffs between the different search biases, it would be useful 
to have a predictive mechanism to calculate the expected performance of a search 
bias given the current system state and the nature of meetings to schedule. We have 
developed a probabilistic analysis scheme that allows an automated scheduler to 
choose the most effective search bias when asked to schedule a meeting [16, 20]. 

5 Resolving conflicts through cancellation and rescheduling 

We now examine some of the critical issues involved in cancellation and subsequent 
rescheduling of meetings. The contents of this section are our first attempt to address 
this significant problem. We have not yet been able to develop a satisfactory user- 
independent means of evaluation of the proposed techniques. Some of the problems 
in developing a user-independent performance criteria include issues of comparing 
Pareto-optimal solutions, measures of social utility, local versus global preferences, 
etc. which require further investigation beyond the scope of this paper. Although we 
are not in a position to present experimental evaluation to validate our contributions, 
we believe that our initial investigations provide a comprehensive approach to can- 
cellation and rescheduling that utilizes user preferences as well as scheduling costs 
and expectations. 

A meeting may need to be canceled in order to accommodate another meeting 
(possibly a higher priority one). This will be done only if the new meeting cannot be 
scheduled at any other time without canceling an already scheduled meeting, i.e., 
when an actual conflict takes place. A meeting canceled (or more appropriately, 
displaced) for another meeting will have to be rescheduled for another time interval. 

We first briefly outline the actual process of canceling a meeting, and then present 
the procedure to decide when and what to cancel. When any attendant of a meeting 
decides to withdraw from its previous commitment to a time interval to a meeting, it 
sends a cancellation message to the host of that meeting. The host, in turn, broadcasts 
the cancellation message to all the invitees of this meeting. Simultaneously, the host 
also starts re-negotiation for scheduling this meeting using the multistage negotiation 
protocol. We now describe an algorithm that extends the scheduling protocol pre- 
sented earlier to incorporate cancellation. 

The aim of scheduling is to find an empty interval in the calendar for a newly 
requested meeting, but when no such interval can be found, the new meeting could 
"bump" one or more lower priority meetings (which have to be rescheduled). In the 
first of these phase, that is, while looking for empty intervals on the calendar, the 
scheduler need not worry about the priority of the meeting, as it tries to schedule all 
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meetings (assuming all requested meetings have a positive priority). If no interval 
can be found of the required length that is free on each of the attendees' calendar, the 
host initiates a special cancellation phase which involves extensive use of meeting 
priorities and other relevant knowledge. In this phase, all the viable time intervals for 
the particular meeting are ranked on the basis of the net utility of such an assignment. 
The net utility to agent x of scheduling the new meeting in interval I ('t/new, t,x) is 
defined as: 

r~new, l, x : Wnew, x -- E (Cjl,x,X + qh.x * wh.x,x), 
Jl,x 

where the summation extends over all the meetings that have to be canceled in order 
to make the interval I free on agent x's calendar, Ck.x corresponds to the expected cost 
of agent x for rescheduling the kth meeting, Wk,x is the priority of the kth meeting to 
agent x, 6) qk is the probability of failure in rescheduling the kth meeting. The cost of 
rescheduling a meeting is estimated by taking into account the number of packets 
exchanged and the total time taken when the meeting was originally scheduled. Every 
agent also tries to update its knowledge about the density of the schedules of the other 
agents (this information can be explicitly requested from another agent while a meet- 
ing with that agent is being scheduled, or it may be obtained from another agent who 
has obtained it from the said agent), and this information is used to estimate the prob- 
ability of failure in rescheduling a particular meeting. 

We consider the resource requirement (R(i, j)  = (vii, Pij, bij, rij)) of the process at 
agent j involved in scheduling meeting i. Let us represent by plj the set of all time 
intervals that were proposed during the first pass by the host. These were those 
elements of vii which did not overlap with another time interval, either blocked or 
reserved for another meeting by agentj. We define the set of viable time intervals that 
were not proposed in the first phase of negotiation as P/~ = vii - Pi~. Elements of the 
whole set uij will be considered in the cancellation phase for scheduling the meeting 
i. The strategies for using these time intervals for negotiation with other processes 
involved in scheduling the same meeting will vary depending on the scheduling 
strategy followed during negotiating with elements of pb, and also on certain other 
factors. 

Let us assume that one or more of the invitees of the meeting i were using the 
alternatives bidding strategy, and let RJj be the set of all distinct time intervals that 
were either proposed by the host in the first phase of negotiation, or counter-proposed 
by the invitees in response to proposed time intervals in Pi~. Let /~b = R:j N Pi~ be 
the set of intervals counter-proposed by one or more invitees in the first phase of 
negotiation, and which were never proposed by the host during that phase. We 
now divide /~]j into ei= Ia i l -  1 equivalent classes  /~:j(1) . . . . .  [~:j(ei), where [~:j(x) 

6)Note that this formulation allows different priority assignments to a meeting by its attendants. 
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contains those elements o f / ~  that were counter-proposed by exactly x invitees. For 
completeness, we define R~j ( 0 ) =  P/] -/~/~ to be those intervals that were neither 
proposed by the host, nor counter-proposed by any invitee during the first phase of 
negotiation. We also assume that each of the sets / ~  (x), x = 0 ..... e i, are ordered by 
their position on the calendar. We also divide the set R]j into similar equivalent classes, 
where the set R}j(x), x = 0 . . . . .  e i consists of those intervals that were proposed by 
exactly x attendees (including the host) during the first phase of negotiation. Notice 
that R]j (x) ~ R~ (x), x = 0 . . . . .  el, because the latter involves time intervals counter- 
proposed by the invitees while the former consists of those counter-proposals as well 
as intervals that were proposed by the host. 

In the second phase of negotiation, the host starts with the set R~(eij) and then 
1 1) ..... R~j(O), if the meeting cannot be successively considers the sets Ri j (e i j -  

scheduled with the time intervals in the set under consideration. Investigation of a 
particular set R~j(x), x = 1 . . . . .  ei, proceeds as follows. The host first considers 
members of the set R~j(x) and then the members of the set R ~ ( x )  - R ~ ( x )  because 
in the former case one of the agents who need to be convinced about agreeing to a 
time interval is the host itself (as the host of the meeting it is easier to work around 
your own schedule than to persuade another agent to change its schedule). The under- 
lying assumption of forming and using these equivalence classes is that it is more 
difficult to convince m attendees to change their mind about using a slot for a meeting 
than it is to convince n attendees to do the same (where m > n). 

For a given set, each member of the set is used to calculate the utility (for the 
host) of scheduling the new meeting in that slot. We can use two heuristics to choose 
the time interval to be used for the new meeting. In the first case, we use any 
time interval for which the sum of the utilities of all the attendees (invitees + host) 
scheduling the new meeting in that interval is greater than zero. So, in this globally 
beneficial strategy, the meeting is scheduled for a time interval T such that 

2 "Unew, 'T', a > O. 
a•A i 

In the second case, we use any time interval for which the utility of each attendant 
scheduling the new meeting in that time interval is non-negative, and at least for one 
attendant the utility is positive. So, in this locally beneficial strategy, the meeting is 
scheduled for a time interval T such that 

(Va E Ai, Unew, T, a >- O) and (3a E Ai, Unew, T, a > 0). 

So, if we are using the globally beneficial method, we negotiate with each member 
of R]j(x), x = 1 . . . . .  ei, before considering any member of R ] j ( x -  1). Using the locally 
beneficial method though, we can reduce the search space at the host, and negotiate 
with only those elements in R~j(x), x = 0 . . . . .  ei, for which there is a non-negative 
utility for the host of scheduling the meeting at that interval. 
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The host uses a special message to convey to the invitees that a cancellation phase 
is being entered for scheduling the new meeting (this enables the invitees to process 
proposals in a different manner than in the first phase of negotiation). In this second 
phase, the host may propose one or more time intervals per round of negotiation, and 
the invitees reply with their respective utilities for scheduling the new meeting at 
proposed time intervals (a modified yes_no bidding strategy which provides more 
information than a binary signal). It is useful for the invitees to use a sort of committed 
strategy in this phase, in that they do not schedule more meetings in the interval being 
considered before hearing back from the host. This serves to keep the utility value of 
scheduling the new meeting for a particular interval constant while the agents nego- 
tiate using that interval. Note, that this commitment is not necessary for an interval if 
the invitee knows that the host is using the locally beneficial method of cancellation 
and if its utility for scheduling the meeting at the particular interval is negative. 

In the case of all invitees using the yes_no bidding strategy, R~j = plj. We divide 
R~j into equivalent classes and we define RIj(0) = vii - P~j. We next proceed with 
negotiation using these equivalent classes as described before. 

In the above process, the host stops the search for an acceptable time interval if 
the deadline for scheduling the meeting arrives, and informs the invitees to abort their 
respective search processes as well. If the new meeting is scheduled for an interval, 
all the meetings previously scheduled and found overlapping with that interval 
are canceled. In certain situations, such cancellations and rescheduling efforts may 
generate long chains of computation. This chain is bounded though, since we will not 
try to reschedule a meeting for which the scheduling deadline has passed. Our method 
also provides an automatic damping mechanism for restricting domino effects of 
meeting cancellations. Following our method, sooner or later the utility of canceling 
another meeting will be negative and this stops the chain. We are currently working 
on developing better utility measures, as well as generating more accurate estimates 
of the cost and the probability of failure of rescheduling a meeting (to be displaced to 
accommodate a high utility meeting) based on the effort required to schedule it origi- 
nally, and the amount of time that has elapsed since that meeting was scheduled. 

6 Conclusions 

In this paper, we have argued in general terms for developing surrogate agents that 
make decisions based on carefully-constructed models of the application domain, 
and we have more specifically highlighted the importance of retaining flexibility for 
future resource requests when searching for a solution to a current resource schedul- 
ing problem. Flexibility can take many forms, including flexibility to eventually 
schedule resources for long periods, and flexibility for scheduling resources for brief 
periods on short notice. Given these alternative criteria for evaluating scheduling 
decisions, we have implemented and evaluated several approaches for biasing the 
distributed search process in a distributed meeting scheduling application. From our 



S. Sen, E.H. Durfee / Contract-based scheduling 221 

results, it it clear that naive decisions about scheduling can have significant and last- 
ing impacts on the ability of a schedule to adapt dynamically to new resource requests. 
From a practical standpoint, this means that, in applications like distributed meeting 
scheduling, a human user that is tailoring his or her process should at least be aware 
of the impacts of alternative choices of search bias, and should have the option of 
allowing the scheduling system to adapt its own strategies as circumstances change. 

We also demonstrated the promise of using a natural hierarchical representation 
of calendars in the search process. Our results indicate that hierarchical distributed 
search will be increasingly important as the scheduling problems are scaled up to 
many agents and long schedules. 

When search biases cannot avoid conflicts, conflict resolution becomes necessary. 
We have developed a structured cancellation mechanism that can resolve conflicts 
by maximizing a utility measure. This procedure is computationally effective and 
captures the intuitive reasoning used by humans to cancel and reschedule meetings. 
Although this procedure needs further evaluation, we believe that this is a good start 
to addressing the complex problem of renegging on past commitments because of new 
contingencies or opportunities. 

Our future efforts will involve addressing broader class of scheduling problems 
using the techniques developed here. We are particularly interested in the dynamic, 
concurrent scheduling of a multitude of resource-constrained project networks 
(possibly managed by different departments in a group) with significant resource 
interdependencies [3]. We also believe that our approach of distributed, incremental 
scheduling in a dynamic domain can be successfully applied to a wide variety of 
scheduling problems on which other AI techniques have been used [14]. In particular, 
we have showed that our proposed system of distributed contract-based negotiation 
can be effectively used in a manufacturing environment [19]. 
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