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Abstract

Cooperative co—evolutionary systems can
facilitate the development of teams of het-
erogeneous agents. We believe that k dif-
ferent behavioral strategies for controlling
the actions of a group of k agents can com-
bine to form a cooperation strategy which
efficiently achieves global goals. We ex-
amine the on-line adaption of behavioral
strategies utilizing genetic programming.
Specifically, we deal with the credit assign-
ment problem of how to fairly split the fit-
ness of a team to all of its participants.
We present several crossover mechanisms
in a genetic programming system to facilit-
ate the evolution of more than one member
in the team during each crossover opera-
tion. Our goal is to reduce the time needed
to evolve a good team.

1 Introduction

We have utilized genetic programming (GP) [Koza, 1992]
to evolve behavioral strategies which enabled a team of
loosely—coupled agents to cooperatively achieve a com-
mon goal [Haynes and Sen, 1996, Haynes et al., 1995].
Since they each shared the same behavioral strategy,
the agents were homogeneous, i.e., each chromosome in
the population implicitly represented the program of &
agents. A simple algorithm to model the actions of oth-
ers 1s to believe that they behave as you would in the
same situation. With homogeneous agents, the agents
can employ this algorithm since their models of other
agents matches the actions of others. A key issue in
distributed artificial intelligence (DAI) research is how
can heterogeneous agents interact to form a team. We
extend our research from the evolution of homogeneous
agents to the evolution of heterogeneous agents in a team.
In this paper, each chromosome in the population expli-
citly represents k programs, each corresponding to an
agent. While we expect a degradation of performance
from agents whose models of other agents are wrong, i.e.,

the agents are heterogeneous while the models are homo-
geneous, we also expect to see a rise in effectiveness of
the cooperation between team members. As our system
does not allow an agent to change its models of the other
members, we believe that team members will evolve into
near homogeneity to facilitate efficient group behavior.

We test our heterogeneous team in the predator—prey
game, a testbed domain from the DAI field. Four pred-
ator agents try to capture a prey agent by surrounding
it orthogonally. The agents exhibit symmetry in that the
predators are interchangeable. Animal hunters can adopt
roles in the hunt: one scouts out the quarry, one flushes
the quarry, and another kills the quarry. The roles are
dynamically allocated to fit the state of the current hunt;
each hunter must be able to perform each role.

2 Coordination Strategies

We presented a new approach for developing coordin-
ation strategies for multiagent problem solving situ-
ations [Haynes et al., 1995], which is different from most
of the existing techniques for constructing coordination
strategies in two ways: 1) Strategies for coordination are
incrementally constructed by repeatedly solving prob-
lems in the domain, i.e., on-line.; and 2) We rely on
an automated method of strategy formulation and modi-
fication, that depends very little on domain details and
human expertise, and more on problem solving perform-
ance on randomly generated problems in the domain.
Our approach uses strongly typed genetic program-
ming (STGP) [Montana, 1995] to evolve the coordina-
tion strategies. The strategies are encoded as symbolic
expressions (S—expressions) and an evaluation criterion
is chosen for evaluating arbitrary S—expressions. The
mapping of various strategies to S—expressions and vice
versa can be accomplished by a set of functions and ter-
minals representing the primitive actions in the domain
of the application. Evaluations of the strategies repres-
ented by the structures can be accomplished by allowing
the agents to execute the particular strategies in the ap-
plication domain. We can then measure their efficiency
and effectiveness by some criteria relevant to the domain.



Populations of such structures are evolved to produce in-
creasingly efficient coordination strategies.

We have used the predator-prey pursuit game [Benda
et al., 1986] to test if useful coordination strategies can be
evolved using the STGP paradigm for non—trivial prob-
lems. This domain involves multiple predator agents
trying to capture a mobile prey agent in a grid world
by surrounding it. The predator—prey problem has been
widely used to test new coordination schemes [Korf, 1992,
Stephens and Merx, 1990]. The problem is easy to
describe, but extremely difficult to solve; the perform-
ances of even the best manually generated coordination
strategies are less than satisfactory. STGP evolved co-
ordination strategies performed competitively with the
best available manually generated strategies.

In this work we examine the rise of cooperation
strategies without implicit communication. In our previ-
ous research, the developed strategies had implicit com-
munication in that the same program was used to control
the predator agents. This removal of implicit commu-
nication is achieved by having each predator agent being
controlled by its own program. Such a system solves a co-
operative co—evolution problem as opposed to a compet-
itive co—evolution problem as described in [Angeline and
Pollack, 1993, Haynes and Sen, 1996, Reynolds, 1994].
We believe that cooperative co—evolution provides oppor-
tunities to produce solutions to problems that cannot be
solved with implicit communication.

3 Pursuit Domain

In our experiments, the initial configuration consists of
the prey in the center of a 30 by 30 grid, and the predat-
ors are placed in random non—overlapping positions. All
agents choose their action simultaneously. For the train-
ing cases, each team is allowed 100 moves per case. The
environment is updated after all of the agents select their
moves, and then the agents again choose their next ac-
tion based on the updated state. Conflict resolution is
necessary since we do not allow two agents to co—occupy
a position. If two agents try to move into the same loc-
ation simultaneously, they are “bumped back” to their
prior positions. One predator, however, can push another
predator (but not the prey) if the latter decided not to
move. The prey’s movements are controlled by a strategy
that moves it away from the nearest predator, with all
ties being non—deterministically broken. The prey does
not move 10% of the time: this effectively makes the pred-
ators travel faster than the prey. The grid is toroidal in
nature, and diagonal moves are not allowed. A capture
is defined as all four predator agents occupying the cells
directly adjacent, and orthogonal, to the prey, i.e., when
the predators block all the legal moves of the prey. A
predator can see the prey, and the prey can see all the
predators. However, two predators cannot communicate
to resolve conflicts or negotiate a capture strategy. The

latter eliminates explicit communication between agents.

To evolve coordination strategies for the predators us-
ing STGP we need to rate the effectiveness of those
strategies represented as programs or S—expressions. We
chose to evaluate such strategies by putting them to task
on k randomly generated pursuit scenarios. For each
scenario, a program is run for 100 time steps. The per-
centage of capture is used as a measure of fitness when
we are comparing several strategies over the same scen-
ario. Since the initial population of strategies are ran-
domly generated, it 1s very unlikely that any of these
strategies will produce a capture. Thus we need addi-
tional terms in the fitness function to differentially evalu-
ate these non—capture strategies. The key aspect of GPs
(including STGP) or GAs is that even though a partic-
ular structure is not effective, 1t may contain useful sub-
structures which when combined with other useful sub-
structures, will produce a highly effective structure. The
evaluation (fitness) function should be designed such that
useful sub—structures are assigned due credit.

With the above analysis in mind, we designed our eval-
uation function of the programs controlling the predators
to contain the following terms:

e After each move is made according to the strategy,
the fitness of the program representing the strategy is
incremented by (Grid width) / (Distance of predator
from prey), for each predator. Thus higher fitness
values result from strategies that bring the predators
closer to the prey, and keep them near the prey. This
term favors programs which produce a capture in the
least number of moves.

e When a simulation ends, for each predator occupying
a location adjacent to the prey, a number equal to
(number of moves allowed * grid width) is added to
the fitness of the program. This term favors situations
where one or more predators surround the prey.

e If a simulation ends in a capture position, an ad-
ditional reward of (4 * number of moves allowed
grid width) is added to the fitness of the program.
This term strongly biases the evolutionary search
toward programs that enable predators to maintain
their positions when they succeed in capturing a prey.

In our experiments, the distance between agents is
measured by the Manhattan distance (sum of x and y
offsets) between their locations. We have limited the
simulation to 100 time steps. As this is increased, the
capture rate will increase. In order to generate general
solutions, (i.e., solutions that are not dependent on initial
predator-prey configuration), the same & training cases
were run for each member of the population per gener-
ation. The fitness measure becomes an average of the
training cases. These training cases can be either the
same throughout all generations or randomly generated



for each generation. In our experiments, we used random
training cases per generation.

4 An Environment for Teamwork

In our earlier work, each program was represented as a
chromosome in a population of individuals. One method
to compose a team from different chromosomes is to ran-
domly selected members from the population of chromo-
somes, with each member awarded a certain percentage
of the total fitness. (We could also ensure that each mem-
ber of the population participates in ¢ teams.) Each mem-
ber would get the points that it definitely contributed to
the team’s fitness score. How do we divide up the team’s
score among the participating members (chromosomes)?
Is it fair to evenly divide the score? Assuming k& mem-
bers to a team, if the actions of one individual accounted
for a large share of the team’s score, why should it only
get %th of the score? This problem is the same as the
credit assignment problem in [Grefenstette, 1988]. An-
other partitioning of this strategy is to deterministically
split the population into k sized teams. Thus the first &
individuals would always form the first team. The prob-
lem with this is that it imposes an artificial ordering on
the population. The same team in generation G; might
not be formed in generation G471 due to a re-ordering
caused by the reproductive cycle.

The method we employ to ensure consistency of mem-
bership of a team is to evolve a team rather than an in-
dividual. Thus each chromosome consists of k& programs.
Subject to the effects of crossover and mutation, we are
ensured that the same members will form a team. This
effectively removes the credit assignment problem. Each
team member always participates in the same team. Thus
all of the points i1t i1s awarded, for both its individual
contribution and the teams contribution, are correctly
apportioned to the entire team.

This approach 1s similar to “the Pitt approach”
used for evolving Genetic-Based Machine Learning sys-
tems [DeJong, 1990]. For GA based production systems,
there are two camps as how to maintain a ruleset: the
Pitt approach is to maintain the entire ruleset as an indi-
vidual string with the entire population being a collection
of rulesets, and “the Michigan approach” is to maintain
the entire population as the ruleset. In the Michigan ap-
proach there is the credit assignment problem of how to
correctly award individual rules for their contributions
to the global solution. The Pitt approach bypasses the
credit assignment problem, in that rules are only evalu-
ated in the context of a ruleset.

Our method of maintaining consistency in a team does
introduce a problem in that what do we do for crossover?
Do we allow crossover, as shown in Figure 1, to take
place in the usual sense? (i.e. only one of the pro-
grams participates in the crossover.) Or, as shown in
Figure 2, do we allow all of the programs to participate

in crossover? The first crossover mechanism allows only
relatively small changes of parent structures to produce
offspring, and thus slows down learning. We present sev-
eral different mechanisms to allow multiple programs to
participate during the crossover process:

TeamTree For comparison purposes we present the
method in which all agents share the same program.

TeamBranch This method 1s simply to pick one cros-
sover point in the chromosome (see Figure 1). This would
be the traditional GP crossover mechanism.

. Crossover Point

Chromosonei

, Crossover Point

Figure 1: Example crossover for 1 crossover point in a
chromosome.

TeamAll This crossover mechanism will speed up the
emergence of good cooperation strategies by allowing
each program in a parent structure to participate in the
crossover process (see Figure 2). A research issue in this
crossover method is determining whether we should con-
strain crossover between corresponding programs in the
two parents. If the first program in the first parent always
crosses over with the first program in the second parent,
then can the first program become a specialist? There
can be a need for specialists, e.g., the dessert maker in
a team of cooks, but in applying this constraint do we
restrict ourselves to a part of the solution space in which
the global optimum can not be found?

_ Crossover Points
N __ . Crossover Points

Figure 2: Example crossover for all programs in a tree. A
crossover point is selected in the subtree of each program.
Thus there are four crossovers taking place; between each
program P; for the two chromosomes.



Some possible solutions to this concern are: 1) For
chromosomes A and B, randomly determine which pro-
gram A; will be used in crossover with program B;. Also
each program in a chromosome participates exactly once
in the crossover process.; and 2) A new mutation operator
could be defined which swaps subtrees between programs
in a chromosome. This is different than recombination in
that there is only one “parent” and one resultant “child”.

TeamAll-Random This crossover mechanism is to
randomly select the program A; will be used in crossover
with program B; in the TeamAll method. (The rest of
the crossover mechanisms adopt the random selection of
parents within the context of the desired methodology.)

TeamUniform This crossover mechanism is to adapt
the uniform crossover function from GA research (see
Figure 3). Basically we would develop a uniform cros-
sover mask for the programs inside a chromosome. A
“1” would indicate that the programs are copied into the
respective child, while a “0” would indicate that the pro-
grams would undergo crossover. We are able to use the
uniform crossover function because the number of pro-
grams in a team is fixed. Since the programs are not
atomic in the sense that alleles in GAs are, we could ran-
domly determine the interactions between the programs.
An example of this is if we decided that the order of
interaction between two parent chromosomes ¢ and j is
i(3241) and j(4123), and the bit mask is {1001}, then
this would produce the children s(3(2X1)(4X2)1) and
t(4(2X1)(4X2)3). This is represented visually in Fig-
ure 3. The programs have been re—ordered such that 3
is paired with j4, etc.

TeamKCross This crossover mechanism is to allow
k crossover points inside a chromosome (see Figure 4).
A restriction 1s that crossover point ¢ can not be an an-
cestor node of any crossover point j,j # ¢. A difference
between this method and the previous methods is that
two crossovers can happen to the same program, as can
be seen in Figure 4. Each crossover point ¢ is not tied to
any one program.

5 Related Work

Angeline has investigated adaptive crossover operators
for single—branched chromosomes [Angeline, 1996]. The
self-adaptive multi—crossover (SAMC) adaptively de-
termines both the number and position of crossover
points in each chromosome. The operators we report
differ in that the number of crossover points is a function
of the number of branches in the chromosome and their
positions in the chromosome are random.

6 Results

In a series of experiments, we have evaluated the differ-
ent crossover mechanisms for evolving teams comprised
of heterogeneous agents. The basic setup for each ex-

Figure 3: Example uniform crossover for the mask
(1001). (a) has Parent i with an ordering of (3241). (b)
has Parent j with an ordering of (4123). (c) has Child s,
with two children created via crossover. (d) has Child t,
with two children created via crossover.

periment was a population size of 600, a maximum of
1000 generations, and a maximum fitness of 48,000. In
each generation, each chromosome is evaluated against
the same three random initial placements. We ran each
approach with the same six different initial seeds for the
random number generator. The averaged results for the
Best and Average Fitnesses per generation for the differ-
ent crossover methods are shown in Figures b— 10. We
can rank the methods as:

1) TeamUniform
2) TeamTree, TeamBranch

3) TeamAll, TeamAll-Random

. Crossover Points
i _ 5 Crossover Points
-

Figure 4: Example k crossover points in a chromosome.
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Figure 5: Average and Best Fitness for TeamTree.
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Figure 6: Average and Best Fitness for TeamBranch.

From Figures 5 and 6 we see that TeamTree learns
faster than TeamBranch. This is due to the implicit com-
munication in the form of homogeneity that the agents in
TeamTree employ. As mentioned, this facilitates simple
modeling of others. What we find surprising is that only
one of the four other crossover methods, TeamUniform,
learns to cooperate better than TeamBranch.

In examining the movements of the TeamUniform
agents, we realized one of the benefits of heterogeneous
predator agents: they are able to move in different dir-
ections when in the same quadrant with respect to the
prey’s orthogonal axis. One of the observed behaviors in
both the evolved homogeneous and hand-crafted behavi-
oral strategies is that if two predators were in the same
quadrant, then they would select the same action. This
behavior would lead to deadlock situations, for example
if predators 1 and 2 are lined up on the horizontal axis
with respect to the prey P, then one of the two predators
cannot get to a capture position. With the heterogen-
eous behavioral strategies, deadlock situations have the
potential to be avoided.
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Figure 7: Average and Best Fitness for TeamAll.
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Figure 8: Average and Best Fitness for TeamAll-

Random.

From our analysis of the best four teams per crossover
system, we determined that the some of the TeamBranch
and TeamAll behavioral strategies allow the prey to es-
cape capture. This does not happen when the same
strategy is used to control all agents, i.e. TeamTree
(or STGP from our previous research). From the best
TeamAll strategy, we find that two of the predator agents
evolve very similar movement strategies, suggesting that
the predator agents are learning the same behavioral
strategy (i.e. becoming homogeneous), which in turn im-
plies implicit communication is starting to take place. A
similar occurrence of this duplication of strategies was ob-
served in one of the four best TeamBranch chromosomes.
Note that these graphical representations do not capture
the dynamic interactions caused by a moving prey.

7 Conclusions

We have introduced four different crossover mechanisms
for chromosomes containing more than one result pro-
ducing branch. One of the crossover mechanisms, i.e.
TeamUniform, was found to both speed up the evolution-
ary process and attain higher fitness than the traditional
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Figure 9: Average and Best Fitness for TeamUniform.
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Figure 10: Average and Best Fitness for TeamKCross.

GP crossover mechanism. We believe that the uniform
crossover method will also benefit other domains with
more than one executable branch in the chromosome. In
particular, it could be of benefit to a genetic program-
ming system employing ADFs.

We have also found that heterogeneous agents have
been able to excel in a symmetrical domain. At first
we thought that heterogeneous agents would suffer from
the lack of simple models of others (A capability which
can be employed in homogeneous agent systems.). But
we found that if heterogeneous agents are presented with
essentially the same input, i.e., a similar state induced
by symmetry, they can perform different actions. This
asymmetry of behavioral strategies allows the agents to
avoid potential deadlock situations.
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