
Crossover Operators for Evolving A TeamThomas Haynes and Sandip SenDepartment of Mathematical & Computer Sciences600 South College Ave.The University of TulsaTulsa, OK 74104-3189e-mail: [haynes,sandip]@euler.mcs.utulsa.eduAbstractCooperative co{evolutionary systems canfacilitate the development of teams of het-erogeneous agents. We believe that k dif-ferent behavioral strategies for controllingthe actions of a group of k agents can com-bine to form a cooperation strategy whiche�ciently achieves global goals. We ex-amine the on{line adaption of behavioralstrategies utilizing genetic programming.Speci�cally, we deal with the credit assign-ment problem of how to fairly split the �t-ness of a team to all of its participants.We present several crossover mechanismsin a genetic programming system to facilit-ate the evolution of more than one memberin the team during each crossover opera-tion. Our goal is to reduce the time neededto evolve a good team.1 IntroductionWe have utilized genetic programming (GP) [Koza, 1992]to evolve behavioral strategies which enabled a team ofloosely{coupled agents to cooperatively achieve a com-mon goal [Haynes and Sen, 1996, Haynes et al., 1995].Since they each shared the same behavioral strategy,the agents were homogeneous, i.e., each chromosome inthe population implicitly represented the program of kagents. A simple algorithm to model the actions of oth-ers is to believe that they behave as you would in thesame situation. With homogeneous agents, the agentscan employ this algorithm since their models of otheragents matches the actions of others. A key issue indistributed arti�cial intelligence (DAI) research is howcan heterogeneous agents interact to form a team. Weextend our research from the evolution of homogeneousagents to the evolution of heterogeneous agents in a team.In this paper, each chromosome in the population expli-citly represents k programs, each corresponding to anagent. While we expect a degradation of performancefrom agents whose models of other agents are wrong, i.e.,

the agents are heterogeneous while the models are homo-geneous, we also expect to see a rise in e�ectiveness ofthe cooperation between team members. As our systemdoes not allow an agent to change its models of the othermembers, we believe that team members will evolve intonear homogeneity to facilitate e�cient group behavior.We test our heterogeneous team in the predator{preygame, a testbed domain from the DAI �eld. Four pred-ator agents try to capture a prey agent by surroundingit orthogonally. The agents exhibit symmetry in that thepredators are interchangeable. Animal hunters can adoptroles in the hunt: one scouts out the quarry, one 
ushesthe quarry, and another kills the quarry. The roles aredynamically allocated to �t the state of the current hunt;each hunter must be able to perform each role.2 Coordination StrategiesWe presented a new approach for developing coordin-ation strategies for multiagent problem solving situ-ations [Haynes et al., 1995], which is di�erent from mostof the existing techniques for constructing coordinationstrategies in two ways: 1) Strategies for coordination areincrementally constructed by repeatedly solving prob-lems in the domain, i.e., on{line.; and 2) We rely onan automated method of strategy formulation and modi-�cation, that depends very little on domain details andhuman expertise, and more on problem solving perform-ance on randomly generated problems in the domain.Our approach uses strongly typed genetic program-ming (STGP) [Montana, 1995] to evolve the coordina-tion strategies. The strategies are encoded as symbolicexpressions (S{expressions) and an evaluation criterionis chosen for evaluating arbitrary S{expressions. Themapping of various strategies to S{expressions and viceversa can be accomplished by a set of functions and ter-minals representing the primitive actions in the domainof the application. Evaluations of the strategies repres-ented by the structures can be accomplished by allowingthe agents to execute the particular strategies in the ap-plication domain. We can then measure their e�ciencyand e�ectiveness by some criteria relevant to the domain.



Populations of such structures are evolved to produce in-creasingly e�cient coordination strategies.We have used the predator{prey pursuit game [Bendaet al., 1986] to test if useful coordination strategies can beevolved using the STGP paradigm for non{trivial prob-lems. This domain involves multiple predator agentstrying to capture a mobile prey agent in a grid worldby surrounding it. The predator{prey problem has beenwidely used to test new coordination schemes [Korf, 1992,Stephens and Merx, 1990]. The problem is easy todescribe, but extremely di�cult to solve; the perform-ances of even the best manually generated coordinationstrategies are less than satisfactory. STGP evolved co-ordination strategies performed competitively with thebest available manually generated strategies.In this work we examine the rise of cooperationstrategies without implicit communication. In our previ-ous research, the developed strategies had implicit com-munication in that the same program was used to controlthe predator agents. This removal of implicit commu-nication is achieved by having each predator agent beingcontrolled by its own program. Such a system solves a co-operative co{evolution problem as opposed to a compet-itive co{evolution problem as described in [Angeline andPollack, 1993, Haynes and Sen, 1996, Reynolds, 1994].We believe that cooperative co{evolution provides oppor-tunities to produce solutions to problems that cannot besolved with implicit communication.3 Pursuit DomainIn our experiments, the initial con�guration consists ofthe prey in the center of a 30 by 30 grid, and the predat-ors are placed in random non{overlapping positions. Allagents choose their action simultaneously. For the train-ing cases, each team is allowed 100 moves per case. Theenvironment is updated after all of the agents select theirmoves, and then the agents again choose their next ac-tion based on the updated state. Con
ict resolution isnecessary since we do not allow two agents to co{occupya position. If two agents try to move into the same loc-ation simultaneously, they are \bumped back" to theirprior positions. One predator, however, can push anotherpredator (but not the prey) if the latter decided not tomove. The prey's movements are controlled by a strategythat moves it away from the nearest predator, with allties being non{deterministically broken. The prey doesnot move 10% of the time: this e�ectively makes the pred-ators travel faster than the prey. The grid is toroidal innature, and diagonal moves are not allowed. A captureis de�ned as all four predator agents occupying the cellsdirectly adjacent, and orthogonal, to the prey, i.e., whenthe predators block all the legal moves of the prey. Apredator can see the prey, and the prey can see all thepredators. However, two predators cannot communicateto resolve con
icts or negotiate a capture strategy. The

latter eliminates explicit communication between agents.To evolve coordination strategies for the predators us-ing STGP we need to rate the e�ectiveness of thosestrategies represented as programs or S{expressions. Wechose to evaluate such strategies by putting them to taskon k randomly generated pursuit scenarios. For eachscenario, a program is run for 100 time steps. The per-centage of capture is used as a measure of �tness whenwe are comparing several strategies over the same scen-ario. Since the initial population of strategies are ran-domly generated, it is very unlikely that any of thesestrategies will produce a capture. Thus we need addi-tional terms in the �tness function to di�erentially evalu-ate these non{capture strategies. The key aspect of GPs(including STGP) or GAs is that even though a partic-ular structure is not e�ective, it may contain useful sub-structures which when combined with other useful sub-structures, will produce a highly e�ective structure. Theevaluation (�tness) function should be designed such thatuseful sub{structures are assigned due credit.With the above analysis in mind, we designed our eval-uation function of the programs controlling the predatorsto contain the following terms:� After each move is made according to the strategy,the �tness of the program representing the strategy isincremented by (Grid width) / (Distance of predatorfrom prey), for each predator. Thus higher �tnessvalues result from strategies that bring the predatorscloser to the prey, and keep them near the prey. Thisterm favors programs which produce a capture in theleast number of moves.� When a simulation ends, for each predator occupyinga location adjacent to the prey, a number equal to(number of moves allowed � grid width) is added tothe �tness of the program. This term favors situationswhere one or more predators surround the prey.� If a simulation ends in a capture position, an ad-ditional reward of (4 � number of moves allowed �grid width) is added to the �tness of the program.This term strongly biases the evolutionary searchtoward programs that enable predators to maintaintheir positions when they succeed in capturing a prey.In our experiments, the distance between agents ismeasured by the Manhattan distance (sum of x and yo�sets) between their locations. We have limited thesimulation to 100 time steps. As this is increased, thecapture rate will increase. In order to generate generalsolutions, (i.e., solutions that are not dependent on initialpredator{prey con�guration), the same k training caseswere run for each member of the population per gener-ation. The �tness measure becomes an average of thetraining cases. These training cases can be either thesame throughout all generations or randomly generated



for each generation. In our experiments, we used randomtraining cases per generation.4 An Environment for TeamworkIn our earlier work, each program was represented as achromosome in a population of individuals. One methodto compose a team from di�erent chromosomes is to ran-domly selected members from the population of chromo-somes, with each member awarded a certain percentageof the total �tness. (We could also ensure that each mem-ber of the population participates in t teams.) Each mem-ber would get the points that it de�nitely contributed tothe team's �tness score. How do we divide up the team'sscore among the participating members (chromosomes)?Is it fair to evenly divide the score? Assuming k mem-bers to a team, if the actions of one individual accountedfor a large share of the team's score, why should it onlyget 1k th of the score? This problem is the same as thecredit assignment problem in [Grefenstette, 1988]. An-other partitioning of this strategy is to deterministicallysplit the population into k sized teams. Thus the �rst kindividuals would always form the �rst team. The prob-lem with this is that it imposes an arti�cial ordering onthe population. The same team in generation Gi mightnot be formed in generation Gi+1 due to a re{orderingcaused by the reproductive cycle.The method we employ to ensure consistency of mem-bership of a team is to evolve a team rather than an in-dividual. Thus each chromosome consists of k programs.Subject to the e�ects of crossover and mutation, we areensured that the same members will form a team. Thise�ectively removes the credit assignment problem. Eachteammember always participates in the same team. Thusall of the points it is awarded, for both its individualcontribution and the teams contribution, are correctlyapportioned to the entire team.This approach is similar to \the Pitt approach"used for evolving Genetic{Based Machine Learning sys-tems [DeJong, 1990]. For GA based production systems,there are two camps as how to maintain a ruleset: thePitt approach is to maintain the entire ruleset as an indi-vidual string with the entire population being a collectionof rulesets, and \the Michigan approach" is to maintainthe entire population as the ruleset. In the Michigan ap-proach there is the credit assignment problem of how tocorrectly award individual rules for their contributionsto the global solution. The Pitt approach bypasses thecredit assignment problem, in that rules are only evalu-ated in the context of a ruleset.Our method of maintaining consistency in a team doesintroduce a problem in that what do we do for crossover?Do we allow crossover, as shown in Figure 1, to takeplace in the usual sense? (i.e. only one of the pro-grams participates in the crossover.) Or, as shown inFigure 2, do we allow all of the programs to participate

in crossover? The �rst crossover mechanism allows onlyrelatively small changes of parent structures to produceo�spring, and thus slows down learning. We present sev-eral di�erent mechanisms to allow multiple programs toparticipate during the crossover process:TeamTree For comparison purposes we present themethod in which all agents share the same program.TeamBranch This method is simply to pick one cros-sover point in the chromosome (see Figure 1). This wouldbe the traditional GP crossover mechanism.
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1Figure 1: Example crossover for 1 crossover point in achromosome.TeamAll This crossover mechanism will speed up theemergence of good cooperation strategies by allowingeach program in a parent structure to participate in thecrossover process (see Figure 2). A research issue in thiscrossover method is determining whether we should con-strain crossover between corresponding programs in thetwo parents. If the �rst program in the �rst parent alwayscrosses over with the �rst program in the second parent,then can the �rst program become a specialist? Therecan be a need for specialists, e.g., the dessert maker ina team of cooks, but in applying this constraint do werestrict ourselves to a part of the solution space in whichthe global optimum can not be found?
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Some possible solutions to this concern are: 1) Forchromosomes A and B, randomly determine which pro-gramAi will be used in crossover with program Bj . Alsoeach program in a chromosome participates exactly oncein the crossover process.; and 2) A new mutation operatorcould be de�ned which swaps subtrees between programsin a chromosome. This is di�erent than recombination inthat there is only one \parent" and one resultant \child".TeamAll-Random This crossover mechanism is torandomly select the program Ai will be used in crossoverwith program Bj in the TeamAll method. (The rest ofthe crossover mechanisms adopt the random selection ofparents within the context of the desired methodology.)TeamUniform This crossover mechanism is to adaptthe uniform crossover function from GA research (seeFigure 3). Basically we would develop a uniform cros-sover mask for the programs inside a chromosome. A\1" would indicate that the programs are copied into therespective child, while a \0" would indicate that the pro-grams would undergo crossover. We are able to use theuniform crossover function because the number of pro-grams in a team is �xed. Since the programs are notatomic in the sense that alleles in GAs are, we could ran-domly determine the interactions between the programs.An example of this is if we decided that the order ofinteraction between two parent chromosomes i and j isi(3241) and j(4123), and the bit mask is f1001g, thenthis would produce the children s(3(2X1)(4X2)1) andt(4(2X1)(4X2)3). This is represented visually in Fig-ure 3. The programs have been re{ordered such that i3is paired with j4, etc.TeamKCross This crossover mechanism is to allowk crossover points inside a chromosome (see Figure 4).A restriction is that crossover point i can not be an an-cestor node of any crossover point j; j 6= i. A di�erencebetween this method and the previous methods is thattwo crossovers can happen to the same program, as canbe seen in Figure 4. Each crossover point i is not tied toany one program.5 Related WorkAngeline has investigated adaptive crossover operatorsfor single{branched chromosomes [Angeline, 1996]. Theself{adaptive multi{crossover (SAMC) adaptively de-termines both the number and position of crossoverpoints in each chromosome. The operators we reportdi�er in that the number of crossover points is a functionof the number of branches in the chromosome and theirpositions in the chromosome are random.6 ResultsIn a series of experiments, we have evaluated the di�er-ent crossover mechanisms for evolving teams comprisedof heterogeneous agents. The basic setup for each ex-
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(d)Figure 3: Example uniform crossover for the mask(1001). (a) has Parent i with an ordering of (3241). (b)has Parent j with an ordering of (4123). (c) has Child s,with two children created via crossover. (d) has Child t,with two children created via crossover.periment was a population size of 600, a maximum of1000 generations, and a maximum �tness of 48,000. Ineach generation, each chromosome is evaluated againstthe same three random initial placements. We ran eachapproach with the same six di�erent initial seeds for therandom number generator. The averaged results for theBest and Average Fitnesses per generation for the di�er-ent crossover methods are shown in Figures 5{ 10. Wecan rank the methods as:1) TeamUniform2) TeamTree, TeamBranch3) TeamAll, TeamAll-Random
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(a)Figure 5: Average and Best Fitness for TeamTree.
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(b)Figure 6: Average and Best Fitness for TeamBranch.From Figures 5 and 6 we see that TeamTree learnsfaster than TeamBranch. This is due to the implicit com-munication in the form of homogeneity that the agents inTeamTree employ. As mentioned, this facilitates simplemodeling of others. What we �nd surprising is that onlyone of the four other crossover methods, TeamUniform,learns to cooperate better than TeamBranch.In examining the movements of the TeamUniformagents, we realized one of the bene�ts of heterogeneouspredator agents: they are able to move in di�erent dir-ections when in the same quadrant with respect to theprey's orthogonal axis. One of the observed behaviors inboth the evolved homogeneous and hand-crafted behavi-oral strategies is that if two predators were in the samequadrant, then they would select the same action. Thisbehavior would lead to deadlock situations, for exampleif predators 1 and 2 are lined up on the horizontal axiswith respect to the prey P, then one of the two predatorscannot get to a capture position. With the heterogen-eous behavioral strategies, deadlock situations have thepotential to be avoided.
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(c)Figure 7: Average and Best Fitness for TeamAll.
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(d)Figure 8: Average and Best Fitness for TeamAll-Random.From our analysis of the best four teams per crossoversystem, we determined that the some of the TeamBranchand TeamAll behavioral strategies allow the prey to es-cape capture. This does not happen when the samestrategy is used to control all agents, i.e. TeamTree(or STGP from our previous research). From the bestTeamAll strategy, we �nd that two of the predator agentsevolve very similar movement strategies, suggesting thatthe predator agents are learning the same behavioralstrategy (i.e. becoming homogeneous), which in turn im-plies implicit communication is starting to take place. Asimilar occurrence of this duplication of strategies was ob-served in one of the four best TeamBranch chromosomes.Note that these graphical representations do not capturethe dynamic interactions caused by a moving prey.7 ConclusionsWe have introduced four di�erent crossover mechanismsfor chromosomes containing more than one result pro-ducing branch. One of the crossover mechanisms, i.e.TeamUniform, was found to both speed up the evolution-ary process and attain higher �tness than the traditional
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(e)Figure 9: Average and Best Fitness for TeamUniform.
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(f)Figure 10: Average and Best Fitness for TeamKCross.GP crossover mechanism. We believe that the uniformcrossover method will also bene�t other domains withmore than one executable branch in the chromosome. Inparticular, it could be of bene�t to a genetic program-ming system employing ADFs.We have also found that heterogeneous agents havebeen able to excel in a symmetrical domain. At �rstwe thought that heterogeneous agents would su�er fromthe lack of simple models of others (A capability whichcan be employed in homogeneous agent systems.). Butwe found that if heterogeneous agents are presented withessentially the same input, i.e., a similar state inducedby symmetry, they can perform di�erent actions. Thisasymmetry of behavioral strategies allows the agents toavoid potential deadlock situations.References[Angeline and Pollack, 1993]Peter J. Angeline and Jordan B. Pollack. Compet-itive environments evolve better solutions for complextasks. In Proceedings of the Fifth International Confer-ence on Genetic Algorithms, pages 264{278. MorganKaufmann Publishers, Inc., 1993.
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