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ABSTRACT

Steven Brams’s Theory of Moves (TOM) is an alternative to
traditional game theoretic treatment of real-life interaction
in which players choose strategies based on analysis of future
moves and counter-moves that arise if game-play commences
at a specified start state and either player can choose to move
first. In repeated play, players using TOM rationality arrive
at non-myopic equilibrium[2]. One advantage of TOM is its
ability to model scenarios in which power asymmetries exist
between players. In particular, threat power, i.e., the ability
of an agent to threaten and sustain immediately disadvan-
tageous outcomes to force a desirable result long term, can
be utilized to induce Pareto optimal states in games such as
Prisoner’s Dilemma which result in Pareto dominated out-
comes using traditional methods. Unfortunately, prior work
on TOM is limited by an assumption of complete informa-
tion. This paper presents a mechanism that can be used
by an agent to utilize threat power when playing a strict,
ordinal 2 X 2 game under incomplete information. We also
analyze the benefits of threat power and support this anal-
ysis with empirical evidence.

Categories and Subject Descriptors

1.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems

General Terms
Design, Management, Theory
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1. INTRODUCTION

Reasoning and learning mechanisms in single-stage games
continue to be an active research area in multiagent sys-
tems [1, 4, 7, 8, 11, 12]. Unfortunately, many approaches
presuppose reasoning in which agents act simultaneously
and payoffs are immediately distributed after a single in-
teraction. The limitation of such an approach is that it fails
to adequately represent an abundance of real-life scenarios
in which agents engage in a natural move-counter move pro-
cess or take decisions as a function of some initial state. In
analyzing such dynamic games, concepts such as single-shot
stage games and Nash equilibria (NE) [5, 6] are ill-equipped
and more elaborate techniques are required to understand
realistic outcomes. Hence, extensive form game frameworks
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have been studied with solution concepts including subgame
perfect equilibrium [5]. In these games, both the start state
and the initial player is specified and a finite game tree, with-
out cycles, is analyzed to derive equilibrium strategies [10].
While this model does address scenarios where agents can
alternate moves, it still does not adequately attend to set-
tings where two or more agents are considering their options
from a state of the world, where any of the agents can be
the first mover and where there is a possibility of cycling
between world states.

In Steven J. Brams’s 1994 book Theory of Moves [3], a
framework is provided where play commences at a particu-
lar state and subsequent moves are determined from a finite
lookahead in conjunction with backward induction analysis.
As aresult, either player has the opportunity to initiate play.
The basic TOM framework considers complete information
games and analyzes convergence to Non-Myopic Equilibrium
(NME). Brams’s work also studies games in which there ex-
ist inherent asymmetries between players and establishes the
concepts of threat power (the ability to sustain a negative
outcome in the short term in order to ultimately arrive at
a more preferred state, moving power (the ability to sustain
game cycling), and order power (the ability to force a game
to proceed in a specified order).

TOM'’s reliance on complete information results in obvious
limitations. Ghosh and Sen proposed a probabilistic learning
algorithm to circumvent this requirement in which agents
operating with incomplete information engage in repeated
play and converge to a primitive form of NME [9], which we
refer to as basic NME. If an agent wishes to utilize threat
power, however, knowledge of an opponent’s payoff structure
is also essential. So while TOM learners suffice for simple
games between symmetric players, an enhanced technique,
which allows inference of threat states, is required if one
player wields greater authority than its opponent.

Unfortunately, in the domain of 2 x 2 games, knowledge
of one’s payoff matrix coupled with basic NME convergence
does not always suffice to deduce complete information of an
opponent’s payoff structure. In fact such inference is possible
only in a handful of games. However, we show that the
complete knowledge of an opponent’s payoff is not necessary
to infer threat power, and so long as the range of possible
payoffs is constrained in a certain way, threat power can be
utilized.

We consider all possible 2x 2 games with strict, ordinal
preferences (players’ preferences for a total order of the 4
possible outcomes). We introduce an equivalence relation
over these games which preserves threat states in 97% of



partitions, along with a mechanism for inferring the equiv-
alence class of a game being played. Additionally, even if
a player finds itself playing a game in one of the of incon-
sistent partitions, we show that, for certain categories of
threats, it will not lose utility by utilizing a threat from any
game within the partition. This result allows TOM agents
to recognize and utilize threat powers in 2Xx2 incomplete
information games with strict, ordinal preferences.

Our analysis of threat power shows that at times it might
be detrimental to utilize threat power. We then characterize
threats by their relative benefits and risks and support our
conclusions with experimental results. To the best of our
knowledge, this is the first concerted effort in characterizing
and utilizing of threat power to the incomplete information
setting.

The rest of this paper is organized follows: section 2 cov-
ers relevant background information including an overview
of TOM, NME, and threat power. Section 3 explains defini-
tions and notations used. Section 4 presents our mechanism
for discovering threat states in incomplete information set-
tings. Section 5 analyzes the effectiveness of different threats
with section 6 providing simulation results which match this
analysis. Finally, section 7 provides a brief conclusion and
closing remarks about foreseeable future research goals that
follow from this research.

2. BACKGROUND

This section reviews the essential aspects of the Theory of
Moves framework and describes threat power entirely.

2.1 Rationality Rules

TOM is a dynamic approach to game theory in which
players engage in a move-counter-move process rather than
being confined to a single shot interaction. Unlike its pre-
decessors such as normal form games, TOM requires the
initial state of a game to be determined as a function of ini-
tial strategies selected by players. Once an initial state has
been established, the following basic rules dictate play of
the game [2, p. 23]:

e Play starts at an outcome, called the initial state, deter-
mined by an initial strategy profile chosen by the players.

e Either player can unilaterally switch its strategy, and thereby

change the initial state into a new state, in the same row or
column as the initial state. The player who switches is called
Player 1 (P1).

e Player 2 (P2) can respond by unilaterally switching its
strategy, thereby moving the game to a new state.

e The alternating responses continue until the player whose
turn it is to move next chooses not to switch its strategy.
The game terminates in a final state, which is the outcome
of the game.

The following are supplemental rules, as listed in [2]:

e If, at any state in the move-countermove process, a player
whose turn it is to move next receives its best payoff, it will
not move from this state.

e If it is rational for one player to move and the other player
not to move from the initial state, then the player who moves
takes precedence: its move overrides the player who stays, so
the outcome will be that induced by the player who moves.
e If one player, say, C' can induce a better state for itself
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Figure 2: Game 57 | Chicken - Subgame with Initial
State: 0, Initial Player: R

by moving than by staying, but R by moving can induce
a state Pareto-superior to C’s induced state - then R will
move, even if it otherwise would prefer to stay, to effect a
better outcome.

The authors propose a final supplemental rule in addition
to those that Brams proposed:

e If a player, say R, can induce a better state for itself by
moving but its opponent, C, by moving, can induce a state
Pareto superior to R’s induced state, and C' has a pure strat-
egy for moving, then R will not move from the initial state
so that C’s move will take precedence

2.2 NME and backwards induction

To select an initial strategy and make rational decisions
about moving, a player must think non-myopically by con-
ducting analysis not only on its opponent’s current strategy
but what it believes their future strategies will be. This anal-
ysis is called backwards induction and outcomes induced as
a result of it are termed non-myopic equilibria or NMEs.
For the purpose of this paper, we define NMEs which con-
form only to the basic rules as basic NMEs and those which
conform to all of the rules as cooperative NMEs. NMEs guar-
antee Nash pay off in the worst case, and often are Pareto
optimal states that manifest in games such as Prisoner’s
Dilemma which are unattainable under Nash conventions.
Furthermore, not all games contain a pure strategy NE but
every 2 X 2 game has at least one pure NME [2, p. 33].

Let us analyse Fig. 1. Two pure NE exist in this game:
(2,4) and (4,2), excluding the perceived “fairest” state: (3,3).
Fortunately, three NME exist in this game, one of which is
(3,3). To identify NME, backwards induction is computed
on all subgames, with a subgame defined as a hypotheti-
cal move counter-move process originating from a specified
initial state and designated first player.

Examine the subgame with start state (3,3) and initial
player row! given in Fig. 2. The backwards induction pro-
cess begins by examining the last position in the rotation,
(2,4): if play makes it to this point, C' has two options: stay
at (2,4) or switch strategies resulting in the payoff distribu-
tion (3,3). Clearly, (2,4) is preferred so C chooses to stay.
Thus if game play arrives at (2,4) with C playing, (2,4) will
be induced; it is dubbed a survivor and indicated by square
brackets. This is known as blockage because play will not

'For the remainder of the paper, row player will be desig-
nated as R and column player designated as C
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Figure 3: Game 30 | The Cuban Missile Crisis - row
player US and column player SU

commence beyond this point. At (1,1), R has two options:
stay at (1,1) or switch rows to (2,4). R prefers (2,4) so it
becomes the survivor at (1,1). At (4,2), it might appear C
will stay rather than move to (1,1) but C moves. It does
so because it realizes based on the preceding analysis that if
play proceeds to (1,1), it is rational for R to move, and play
will eventually terminate at (2,4): C’s most preferred state.
Therefore (2,4) is the survivor at (4,2). Finally at initial
state (3,3), R has the decision to stay and receive 3 or move
and receive 2. R prefers (3,3) so it becomes the survivor,
indicating blockage and no initial move from R. Therefore,
(3,3) is the basic NME for this subgame.?

Similar backwards induction on the subgame with same
initial state but C as the initial player reveals its basic NME
is likewise (3,3). Therefore, for subgames of Chicken with
initial state (3,3), the NME induced is (3,3) regardless of ini-
tial player. We then call (3,3) the uniqgue NME for subgames
games of Chicken originating at (3,3).

2.3 Threat Power

An essential justification for TOM is the implicit assump-
tion in traditional game theory that players have matched
capabilities. In real life natural inequalities often arise be-
tween opponents. Many political and foreign policy events
involving such asymmetric “players” can appear perplexing
when analyzed exclusively within the context of traditional
game theory, as the equilibira predicted often fail to match
outcomes that appear repeatedly in real life.

Let us examine Fig. 3. R nor C have a dominant strategy
and no pure NE exists; traditional theory fails to offer a
rational choice of moves. Let us assume one player, C, can
endure a less than desirable outcome in the short time if
this results in a long term benefit. If C locates a Pareto
inferior state it can, by threatening that state, induce R to
move. Assume players are currently at state (3,3) and R’s
move is next. C' can threaten: “if you switch from row 2 to
row 1 with the hopes of inducing (4,1), then I will refuse to
move from (2,2).” If C follows through on this threat, over
time, R will learn to terminate play upon arrival at (3,3)
because doing otherwise results in a lower payoff. This is
an example of a compellent threat, the other type being a
deterrent threat. We formalizes these concepts now.

Assume a player p1 makes a threat against opponent po
in an attempt to induce outcome (i,7) which has a payoff
for each player represented as (lej,xfj)

e p1’s breakdown state is the Pareto inferior outcome it’s
threatening. The associated strategy is p1’s breakdown strat-
egy

e p1’s threat state is the Pareto dominated outcome it’s try-
ing to induce by using a threat. The associated strategy is
p1’s threat strategy

e pi’s threat is real iff when carried out, it worsens the pay-

2In this paper, basic NME are indicated by boldfaced payoff
in brackets beneath the initial state.
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Figure 4: Game 23 as a Structurally Unique Game

off for p».

e pi’s threat is rational, when successful in deterring ps, it
improves p1’s own payoff over what it would be if p2 moved
from (i, ).

e A threat is credible if it is both real and rational.
Consider threat state (xllj ,x?j) and the existence of a Pareto
inferior breakdown state (w,lnn,x,%m) from the perspective of
R. There are two possibilities for R to carry out a threat:

e R stays: threat and breakdown strategy are the same. In
this case, m = ¢, and the threat is called a compellent
threat

e R moves: threat and breakdown strategy are different. In
this case, m #i, and the threat is called a deterrent threat.

3. DEFINITIONS AND NOTATION

3.1 Domain

We limit our study to two-player, two-action games of to-
tal conflict and total order. Literature has traditionally pro-
posed 57 such games exist by claiming two games are equiv-
alent if a transposition of their players results in the same
set of outcome. That is clearly not the case when dealing
with threat power. To see why, refer to Fig. 4 which presents
Game 23 on the left and the result of player transposition on
the right. While these games are structurally distinct in the
traditional sense, (a) contains a t. for R while (b) does not.
Because of this, we consider 108 games: the 57 structurally
distinct games and their player inversions®.

3.2 ¢ values

For any subgame the computing effort, or e-value, is de-
fined as the number of unilateral strategy switches necessary
to induce its NME. If the subgame induces a cycle, the e-
value is equal to the number of states in the rotation. For
example, in the subgame represented in Fig. 1, the e-value
is 0; and any cyclical 2 X 2 subgame has an e-value of 4. On
first glance it might not be apparent the distinction between
NMESs and e-values, and in games of a non-cyclic nature a
player can infer one set of values from the other. How-
ever, in cyclic games e-values provide more information and
NME is not sufficient alone to deduce them. This distinction
provides motivation for development of the enhanced TOM
Learners Algorithm in Section 4.1 so we formalize it below.

LEMMA 1. Knowledge of e value = knowledge of NME.

PROOF. e value, by definition, specifies NME as its posi-
tion in game rotation []

The converse is not necessarily true. Consider a subgame
where the initial state is the NME. There is no way of know-
ing if the NME is induced by cycling or stagnant players so
the e value cannot be deduced

36 games are identical when inverted regardless of switching
the row and column player so these games are not included
twice in the domain



3.3 Game Notation

We represent a game between a player py and its oppo-
nent, denoted pj as a set g; = { PF,PF e;} where Pf and P
are pr and pg’s payoff matricies, respectively. Consequently,
we can extrapolate four outcomes {O01,1,01,2,02,1,02,2} where
O;,j= (Pi’fj, Pi’f]-). If ¢ represents a given outcome, then &P
is the outcome diaganol to &, EXP is the outcome resulting
by a unilateral strategy switch by pr (px’s direct neighbor),
and ¢NT is the outcome resulting by a unilateral strategy
switch by p; (px’s indirect neighbor). e; is a vector matrix
which holds a vector for each outcome, each of which con-
tains two e-values, one for each subgame originating there.
Each player py has a strategy profile Si,={s¢,s%}. An out-
come in the game Oy is composed by a combination of player
strategies. ¢; thus is defined explicitly by the players’ four
unique strategy combinations.

3.4 Knowledge set

We represent pi’s knowledge concerning g; with the vari-
able K¥ C g;. The following demonstrate the potential
knowledge sets pr can possess: B

() K = {PF}; (i) K = {PE,PF}: (iif) K* = {PFei);
(iv) Kf = {PikaPikvei}

First note that ii is equivalent to iv.*, so we may limit our
discussion to sets i through iii. We define i as incomplete,
ii as complete, and iii as partial.

If an agent has a complete knowledge set, it can trivially
identify and subsequently utilize threat states. But with
a partial knowledge set, this is not always the case. Before
continuing, we present the following theorem which indicates
a partial knowledge set is not sufficient to deduce a complete
one, a result which will provide essential justification for
development of the mechanism proposed in Section 4. Due
to space constraints, the proof for this theorem has been
omitted, but is available upon request of the authors.

THEOREM 2. Let py be a player of game g; with opponent
pr. Assume pr has a partial knowledge set. It is impossible
to guarantee inference of a complete knowledge set.

3.5 Equivalence Relation on the 2 x 2 games

Consider the following binary relation ~y:

Let gi = { Pik7pik7ei}, gj = { ng7pjkaej}
gi~ng; = P =P/ Nei=¢;

A similar relation can be defined for pz. WLOG we dis-
cuss ~y and denote it simply as ~. 57 equivalence classes
are derived from ~. We utilize this partitioning as it pre-
serves threat states nicely, providing a strategy for discover-
ing threat states later on when limited to partial knowledge.

LEMMA 3. At most one t. can occur in any equivalence
class constructed by ~.

THEOREM 4. Let g; ~ g;. If gi contains some t., pr re-
ceives no worse payoff using this threat in subgames of g;.

41f a player’s knowledge set is ii it need only perform back-
wards induction to obtain e values.

4 -1
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Figure 5: Formula for Computing P values

4. MECHANISM FOR UTILIZING THREAT
POWER IN GAMES OF INCOMPLETE
INFORMATION

When an agent’s knowledge set for a game is complete,
discovery of credible threats is trivial but for limited knowl-
edge sets threat states are not always as obvious. The goal
then is to develop a protocol for agents to identify credible
threats even when limited by incomplete or partial knowl-
edge sets. We present herein such a mechanism.

4.1 PartI: Learning Phase

In the proceeding section, we show that if an agent has a
partial knowledge set, it can identify the equivalence class
of the game it is playing, and Theorem 4 indicates that if
an agent knows this equivalence class then threat power can
be utilized. Therefore, we wish to first employ a method
by which a player can infer a partial knowledge set from
an incomplete one. Ghosh and Sen proposed a learning al-
gorithm in which players with incomplete knowledge sets,
through repeated play, converge to a single outcome [9].
While most often these learners converge to an NME, the al-
gorithm provides no insight for games which are cyclic and
hence e-values cannot be obtained. An enhanced version
of the algorithm to procure e-values is presented with the
following procedure:

e Each agent selects an initial strategy, thus determining the
subgame played

e Each agent calculates P;""(S;), the probability of player p;
moving from state S; in subgame with initial state/player
combination (s,p). For a player pg, two distinct P values
can be calculated: (1) The probability that pi’s opponent,
denoted pz, will move from S;; calculated as the ratio of
times pj, has moved from S; rather than stayed, initialized to
1.0 to provide for initial exploration, and (2) the probability
pi itself will move, calculated with the following formula:

4 -1
PP(S) = ) ( I1 P;”’(S,J) (1= PP (S))f(Or, 0F)

I=i+1 \n=i+1

where OF and OF are pi’s payoff at outcomes O; and O;,
respectively; and f is a function constructed to reflect pi’s
preference between two outcomes.

e Play terminates when a cycle is reached or both players
choose not to move.

4.2 Part II: Inference Phase

Upon completion of the Learning Phase, p; has acquired
a partially complete knowledge set. The task then becomes
to identify the equivalence class of the game it is playing.
An obvious brute force approach can be employed: an agent
exhaustively generates all possible opponent payoff matrices,



computes backwards induction on all subgames to generate
e-values, checks each games for equivalence using its partial
knowledge disregarding games that are not equivalent and
checking this list at each step against all equivalence classes
until it finds a match.

As an alternative, the authors propose the following method:

pi generates 4 belief variables o, B, 7, and § representing its
belief of p;’s preference for each state in the game. An agent
trivially knows:

« E {17273’4}’ /8 E {1727374}7 ’y e {1’27374}7 5 e {1727374}

Simple prediction rules coupled with partial knowledge
are used to eliminate values from these sets. Any further
elimination necessary reduces to solving a simple constraint
satisfaction problem. Before describing the CSP, the pre-
diction rules are listed with the following convention used:
ei(ay) is the e-value for subgame with initial player/state
combination (a,py).’?

1. e(a) = <4,4> <= « is the mutually most preferred.
Proof: Assume e;(a) = <4,4> for some a. = ar >
a® and ac > aX” and ac > ad! (from the subgame
with R initializing). = ar > 2 and ac > 3. Also,
ac > af and ag > af” and ar > oR’ (from the
subgame with C initializing). = ar = 4 and ac = 4.
. ei(a) = <4,4> = a mutual best state.

Now, assume « is a mutual best state. = regardless
of which player begins, if we do backwards induction,
no state can block, and « will cycle. .. a is a mutual
best state = e;(a) = <4,4>

Thus, by (i) and (ii), ei(a) = <44> <= a«ais a
mutual best state.

2. e(ar) € {0,4} < «is not p;’s least preferred state.
3. e(ar) € {1,2,3} = « is not pi’s most preferred state.

4. If o, B, v are distinct outcomes and e(ax) = e(Br) =
e(yx) = 0 = the remaining state is py’s least preferred
state.

5. If e(ax) = 0 and e(ay) = 4 and for all remaining states
B, e(Br) € {1,2,3}, = « is pi’s most preferred state.

6. e(ar) = 4 or e(al’) = 3 = «a is one of p’s two most
preferred states.

7. If e(ax) = 0 and P¥(a) = 2 = the game does not
contain a mutually least preferred state.

8. If a is pz’s most preferred state, and P*(a®?) < P*(a)
= e(a) = <4,0>

9. If P¥(a”) < P*(a) and e(a) = <4,0> = a is one of
pr’s two most preferred states. Furthermore, if o is
pr’s second most preferred state = o is pg’s most
preferred state.

10. If P*(aP) < P*(a) and e(ax) = <4,2> = o is pg’s
most preferred state.

Sa proof is given for the first proposition, but due to space
constraints subsequent proofs, which can be developed in a
similar manner, are omitted.

R C R C
(aw) (bx) (cy) (d2) | (aw)
Pla)  P(B) P(y) P(9)

Figure 6: General Game: Generation of P Values -
Example 1

C | 3,4
D 2,3

Figure 7: Game 1 | Pure Superfluous Compellent
Threat for C

After application of rules if an exact opponent payoff has
not been generated, inequalities can be derived from the
agent’s knowledge of e-values to solve a CSP. To establish
inequalities, an agent regenerates the P values discussed in
the previous section. This is done as follows: examine Fig. 6
which models an arbitrary game g; with start state «, initial
player R, and clockwise rotation «, 3, v, 6. If m = Cf(a)
and ¢ is the outcome at the m!® position in the rotation
= P(¢) = 0 because blockage occurs at ¢. Then for all
outcomes  such that 0 occurs earlier then ¢ in the rotation,
P(#) = 1. An example of how this is done is given:

First let us assume that after application of prediction
rules an agent has constrained his belief variables to the
following sets:

a € {123}, B € {1,2}, v € {4}, § € {2,3}

Assume in a subgame with rotation mentioned m = C{*(«)
and m = 4 = ac > d0c N ac > Bc. Simple constraint
satisfaction eliminates the following: 1 and 2 from «, 3 from
0, and 2 from S to arrive at an exact payoff vector {3,1,4,2}

The application of prediction rules followed by constraint
satisfaction is sufficient to predict 103 of 108 classes, and for
games in the remaining 5 classes, the inefficient brute force
approach can be applied as a last resort.

5. FORMAL ANALYSIS OF THREAT POWER

While on surface level all threats might appear the same,
scrutiny reveals certain threats might be more effective than
others. We propose the following categories for classifying
threats, and term threats which do not fall in to one of the
two categories as useful.

5.1 Superfluous Threats

There are a number of threats that while credible, are su-
perfluous. We can consider two separate types of superflu-
ous threats: those which are superfluous regardless of how
an initial strategy selection method, and those which are
superfluous because we could obtain the threat state by em-
ploying learning to select initial strategies.

5.1.1 Pure Superfluous Threats

Consider a game in which there exists one unique NME.
If a threatener’s threat state is the NME, then threat power
is rendered ineffective. Certainly, the agent need not im-
plement threat power because regardless of initial state, the
NME, and hence the threat state, will be induced.

Game 1, in Fig. 7 presents an example of such a super-
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Figure 9: Function for Computing Potential Utility

fluous threat. In Game 1, there exists one unique NME:
(3,4) which is also a deterrent threat for R. However, no
matter which subgame is played, if agents use TOM ratio-
nality, (3,4) will be induced. Even if initial states are chosen
at random, game play converges to the threatener’s desired
result. Threat power is superfluous in this case.

5.1.2 Learning Induced Superfluous Threats

Consider a game in which there exists two unique NMEs,
one of which Pareto dominates the other. Suppose the Pareto
dominant NME is a credible threat for one agent. Prisoner’s
Dilemma is an example of one such game and is shown in
Fig. 8. In PD, (3,3) is a deterrent threat for both R and
C. Furthermore, (3,3) is the NME for subgames with ini-
tial state (3,3), (4,1), and (1,4), while (2,2) is the NME for
subgame with initial state (2,2). This means that if players
are using TOM rules, the outcome depends on the initial
state. Recall that an outcome is a specification of strate-
gies from both players. Because this credible threat is the
Pareto dominant of the two NMEs, players can simply learn
to select (3,3) as the initial state by choosing as a rule the
initial strategy that has fared best for them in the past.

5.2 Detrimental Threats

5.2.1 Potential Utility of a Threat

If agents have the ability to select their initial strategies
in order to influence where game play initiates, then it is
natural to consider the potential utility of a game. We de-
fine agent pi’s potential utility Uy,(g, px) of a game g by way
of the formula given in Fig. 9 which is the sum over all out-
comes o of g of the utility of o as a starting state, pg (o), times
the probability of g initiating at o, P(g, 0). The second equa-
tion describes ph* (0): px’s utility of o as a start state where
P(Op,0,pm) the probability of inducing outcome o, given
start state o and initial player pp,, P(pm) the probability of
Ppm being selected as the initial player for that iteration, and
vk (Op) is py’s valuation (payoff) of outcome o,.

by the sum of the probability of each outcome being the
end result of all subgames initiating at o, times py’s valuation
for that outcome, vi. Note that if an outcome o converges
to a unique NME, pb* (o) = vi(0).

If we consider a vector t; =< P(g,01), P(g,02), .., P(g,0om) >

to hold the probabilities of starting at each outcome and
write p4* (o) as a vector, then an alternate definition for po-
tential utility can be given as U,(g, pr) = ¢4 - po*.

S D
3 | 2
2 1

3, 1
D [4, 1

Figure 10: Game 47 | Detrimental Threat

5.2.2  Definition of Detrimental Threat

If U} (g, px) is a lower bound on potential utility, U3 (g, px)
an upper bound, and U, (g, px) an upper bound when threat
power is being used with credible threat o, and if the follow-
ing inequality can be established:

Uy (g, px) < Up(g,px) < U (9, pr)s

then we can consider threat state o to be detrimental.
The justification for this is simple: if the upper bound of
potential utility is strictly greater than the upper bound
on potential utility when threat power is being considered,
then there exists an NME which pj values more that is not a
threat state. If the upper bound when using threat power is
less than or equal to the lower bound without threat power,
then the worst pr can do without threat power is the same
as when threat power is used, thus pr cannot lose any util-
ity by choosing the higher NME outcome as its dominant
strategy, and it stands to lose out on this NME outcome as
the effectiveness of threat power increases.

Considering the game in figure 10 with two unique NMEs:
(3,3) for games commencing at (3,3) and (1,4), and (4,2)
for games commencing at (2,1) and (4,2). R has a com-
pellent threat at (3,3). Consider a game where the start
state is selected randomly, then the probability vector ti7 =
(0.25,0.25,0.25,0.25). In this case, Up(47,R) = 0.25 x 3 +
0.25 x4+ 0.25 x 34 0.25 x 4 = 3.5. The worst we can ever
do is to start at some exclusive combination of (3,3) or (1,4)
which would lead to a potential utility of 3. Now observe
that as threat power becomes more effective, the probability
vector (1,0,0,0) — U, ™ (47, R) = 3. So as threat power be-
comes more effective, R’s potential utility decreases. Hence
it is never in R’s best interest to utilize its compellent threat.

6. EMPIRICAL ANALYSIS OF THREAT POWER

The goal of our simulations was to observe the benefits of
using threat power. We present empirical results that agree
with the analysis presented in Section 5.

6.1 Simulation Setup

Two distinct sets of simulations were performed: ones
where threat power was used and ones where it was disre-
garded. In each run of the simulations, a game g; was chosen
at random. For the threat power runs, one player is deemed
threatener and its opponent threatenee. Two phases then
occur: a learning/inference phase (which lasts 1,000 itera-
tions or until convergence, whichever occurs first) in which
the threatener employs the mechanism detailed in Section
4 to identify existing credible threats, and a threat phase
(which lasts 1000 iterations) in which the threatener uti-
lizes said threats against its opponent. For the runs without
threat power, the simulation consists of the same number
of iterations, but with both agents employing only the En-
hanced TOM Learners learning algorithm. Iterations are
defined as both agents playing a subgame of g; until one
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Figure 11: Formula for Calculation of Utility of an
Initial Strategy

player decides not to move (in which case the induced out-
come is the blocked state) or a cycle occurs (in which case the
induced outcome is the initial state). The subgame played
each iteration is determined by initial strategy selections of
each agent, and the initial player is chosen deterministically.
If the first player declines to make an initial move, the second
player is given the opportunity to move.

6.2 Ultility of an Initial Strategy

For game g, pi’s it" strategy st is associated with a set
of outcomes, termed an action profile: s% = {O;1,0;2} for
R, or sic = {01,;,02,;} for C. Consider Fig. 8. R has two
strategies: C and D. C is action profile {(C,C),(C,D)} and
D is action profile {(D,C),(D,D)}. pr can estimate the util-
ity of si as shown in Fig. 11, where O is the set of possible
outcomes in g, N the set of players, P(Op,0¢,pm ) the proba-
bility of inducing outcome o, given start state o, and initial
player pp,, P(pm) the probability of p,, being selected as the
initial player for that iteration, and vg(Op) is pi’s payoff at
outcome Op.

6.3 Methods for Selecting Initial Strategies

In TOM the subgame played is determined by players’
initial strategy choices. As a rule, during threat phases,
if a credible threat exists the threatener selects its threat
strategy initially. If its threat state differs from the initial
state, it then implements its breakdown strategy to punish
its opponent for deviation. For learning phases and for the
threatenee, the following methods for strategy selection can
be implemented:

6.3.1 Random Strategy Selection

With random strategy selection (R), an agent chooses an
initial strategy randomly. If p represents the probability of
each outcome in the game being selected as an initial state,
then p has a discrete uniform distribution during learning
phases if both agents use this method and a discrete uni-
form distribution over all outcomes in the threatener’s threat
strategy during threat phases.

6.3.2 Exploratory Learning Strategy Selection

In the Exploratory Learning method (EL), an agent gath-
ers data upon termination of each iteration to learn the be-
havior of its opponent. To determine which initial strategy
to select for an iteration, an agent first calculates the util-
ity of all strategies in its strategy profile then selects the
strategy with the highest, with exploration. The function
for calculating the probability of player p selecting si as its
initial strategy at time ¢ is given in Fig. 12, with I}, the num-
ber of iterations remaining in the current phase. The func-
tion allows for exploration as the initial strategy is chosen
randomly on the first iteration, and subsequent strategies
are selected by highest utility with a monotonic increasing
probability. This probability is a sigmoid function depen-
dent upon how many iterations the agents are set to play.

1
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Figure 12: Function for Probability of Selecting Ini-
tial Strategy

H+T.P.
Type | all C.T. te ta

A +4.08% | +3.43% | +10.13%
Row S +4.06% | +04.57% | -00.26%

U +4.36% | +02.75% | +19.86%

D -00.68% | -00.68% 00.00%

A -11.53% | -12.46% | -03.80%
Col S +00.67% | +00.77% | -00.17%

U -22.48% | -24.49% | -06.31%

D +31.44% | +31.44% | 00.00%

Table 1: Simulation Results of using Hybrid Ran-
dom Exploration Strategy Plus threat power

6.3.3 Hybrid Strategy Selection

In the Hybrid Strategy Selection method (H), R is used
during the learning phase, and EL during the threat phase.

6.4 Results

Each simulation was performed on 10,000 randomly gener-
ated 2 x 2 cardinal matrices. No-conflict games and partial
order games were discarded. In threat power runs, R was
designated as threatener and C' as threatenee.

Simulation results are listed in Tables 1, 2, and 3.
The uppermost row shows the strategy selection method
used. Note that R is not afforded an individual analysis; be-
cause agents employing this method select strategies at ran-
dom, they never learn from past interactions, rendering both
threat power and learning inert. + T.P. indicates threat
power was used. The column headers following “Type” indi-
cate the group of threats being analyzed: t. refers to compel-
lent threats, tq deterrent, and V C.T. indicates all credible
threats were analyzed. The row headers underneath “Type”
indicate the classification of threats being considered: A cor-
responds to all threats, S superfluous, D detrimental, and U
useful. The table is divided in half: the top half detailing
results for R and the bottom half for C. The number in each
individual cell represents the average percent utility gain

EL + T.P.
Type | all C.T. te tq
A +04.75% | +04.13% | +10.35%
Row S +05.97% | +05.78% | 07.68%
U +04.48% | +03.52% | +12.67%
D -06.68% | -06.68% 00.00%
A -10.93% | -11.62% | -05.28%
Col S +02.15% | +02.25% | +01.26%
U -23.53% | -25.41% | -09.59%
D +37.77% | +37.77% | 00.00%
Table 2: Simulation Results of using Learn-

ing/Exploration Strategy Plus Threat Power



H

Type | all C.T. te ta

A +02.66% | +01.92% | +08.93%
Row S +05.02% | +04.42% | +09.92%

U +00.49% | -00.40% | 4+08.02%

D +04.31% | +04.31% 00.00%

A +03.12% | +03.17% | 4+02.70%
Col S +04.49% | +04.32% | +06.01%

U +02.15% | +02.38% | +00.38%

D +00.30% | +00.30% | 00.00%

Table 3: Simulation Results of Using Learn-

ing/Exploration Strategy without Threat Power

which occurred in the threat phase as opposed to the learn-
ing phase for games which possess the category of threats
represented by the intersection of the cell’s row and column
header. For example, a number at the intersection of S and
tc in the bottom half represents the percent utility increase
incurred by C for all superfluous, compellent threats.

6.5 Analysis of Results

In this section we provide an interpretation of the results
in terms the threat classification given in Section 5.

Superfluous Threats As predicted, superfluous threats
showed no added improvements for agents using TP as op-
posed to EL. This can be seen by comparing the results of
all superfluous threats for R in Table 2 against Table 3. We
see that while threat power did help R incur an increase in
utility, the same utility increase (and more) occurred when
R used a learning strategy without threat power.

Detrimental Threats As predicted, detrimental threats
resulted in utility decrease when utilized by R. A surprising
result was the greatest single increase in utility in the sim-
ulation was for C' when R tried to use detrimental threats
against it. Examination of Table 3 implies this effect is a
direct result of TP because in games without TP, R experi-
ences no utility decrease nor does C' experience an increase.

Useful Threats As expected, useful threats performed
well during threat phases. When using H, threateners expe-
rienced on average a 20% increase in utility, more than two-
fold the utility increase experienced in simulations where
threat TP was not involved but learning was.

One marked difference between using EL versus TP is in
the impact on an agent’s opponent. While EL increases
the utility of both agents, TP has a negative impact on the
threatenee, resulting in a 25% utility decrease for certain
games. This drastically affects the social welfare. However
for superfluous threats we don’t see a marked increase in
performance, nor do we see a decrease in performance for
our threatenee. As predicted, this trend is preserved for
games in which threat power was not used.

7. CONCLUSIONS

Theory of Moves is a novel approach to analyzing games
of a dynamic and asymmetric nature which is limited by
a restrictive reliance on complete information. We present
a mechanism which extends the application of TOM and
threat power to incomplete information games by equipping
agents with the ability to identify credible threats from ex-
perience. We analyzed the effectiveness of threats in terms

of individual and social welfare and prescribed three clas-
sifications: superfluous, detrimental, and useful. Empirical
results on simulations of agents with and without threat
power reinforced this classification. We explored the impact
initial strategy selection has on agent utility and showed that
often an exploratory learning strategy produces the same ef-
fect that threat power achieves.

As far as we are aware, the application of TOM outside
the domain of 2 x 2 strictly ordered games is largely unchar-
tered territory. Though the inference mechanism detailed in
Section 4 is tailored to 2 X 2 games, we believe a similar
mechanism can be developed for games with more states,
and hope to develop results which generalize to arbitrary N
X M games, though the complexity of such a mechanism
could be NP complete. Furthermore, we plan to develop
additional rules which will classify the 2 x 2 games entirely,
thus eliminating any need for solving a CSP. Cooperation
strategies in partial order games are also of particular in-
terest. We would like to perform a thorough analysis on
moving and order power and determine if adaptations of
the mechanism provided herein equips agents with incom-
plete knowledge sets the ability to utilize these powers in
addition to threat power.
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