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1 IntroductionIn a distributed, multiagent environment the behavior of a group of agents is evaluatedin terms of the performance of agents and the utilization of resources. Researchers in the�eld of Distributed Arti�cial Intelligence (DAI) have studied the e�ects of local decision-making on overall system performance in groups of both cooperative as well as self-interestedautonomous agents (Gasser and Huhns, 1989; Huhns, 1987). Ine�ective system performancecan be caused by several characteristics of distributed decision-making: con
icts of interests,contention for resources, asynchronicity in the decision process, lack of centralized controlor information, incomplete or incorrect global information, etc.In this paper, we focus on one particular aspect of distributed decision-making: the e�ectof limited local knowledge on group behavior. Whereas intuition suggests that agents areequipped to make better local decisions with more complete and correct information, self-interested choices can at times lead to group instabilities with complete global information.We believe that reducing the amount of information available to such rational decision makerscan be an e�ective mechanism for achieving system stability (Sen et al., 1996). The researchquestion that we are asking is the following: Can limited local knowledge be a boon ratherthan a bane in a multiagent system?To investigate this issue, we use a resource utilization problem where a number of agentsare distributed between several identical resources. We assume that the cost of using anyresource is directly proportional to its usage. This cost can be due to a delay in processingof the task in hand, or a reduction in the quality of the resource due to congestion. Hence,there is a justi�ed need for agents to seek out and move to resources with lesser usage. Otherresearchers have shown that such systems can exhibit oscillatory or chaotic behavior whereagents continually move between resources (Hogg and Huberman, 1991; Kephart et al., 1989)resulting in lack of system stability and ine�ective utilization of system resources. The casehas also been made that the introduction of asynchronous decision making or heterogeneousdecision-making schemes can improve system convergence. We see our current work asproviding a natural, complimentary mechanism for enabling agents in similar situations toquickly converge to the optimal system state.1



Not limited to arti�cial domains discussed here, we �nd an analogy of the resource uti-lization problem within the dynamics of human society. Researchers have observed socialtrends in human societies where the populace tend to look for opportunities and search forbetter openings within a closed environment (Bartos, 1967). For instance, it is obvious andpractical under rational thinking to shift for greener pastures, move for better jobs with lesscompetition, to search for resources with less utilization, etc. The self-interested nature ofan individual leads to choices that are perceived to improve rewards from the environment.The theory of migration in social behavior and occupational mobility suggest a dynamicstructure, the stability of which depends on how an individual chooses its action based onthe prevailing circumstances. Similar to human societies, societies of agents also undergochanges and evolve with time. As agent designers, we are faced with the problem of de-veloping decision mechanisms that allow agent societies to stabilize in states where systemresources are e�ectively utilized. In this paper, we consider agent societies where agentsdecide on their social mobility based only on their perception of the current state of theworld. This assumption of relying only on the current state and ignoring the e�ects of pasthistory on decision making is also used in Markovian analysis (Howard, 1971).This study attempts to verify the following conjecture: limited knowledge of the environ-ment can be bene�cial for an agent in comparison to complete global knowledge. We presenta decision mechanism to be used by individual agents to decide whether to continue usingthe same resource or to relinquish it in the above-mentioned resource utilization problem.We show that a spatially local view of an agent can be e�ectively used in a decision proce-dure that produces stable allocation of agents to an optimal global state in terms of e�ectiveresource utilization. Experimental results show that increasing the information availableto an agent increases the time taken to reach the desired equilibrium state. We provide aprobabilistic analysis explaining this phenomena.The rest of the paper is organized as follows: the Section 2 brie
y states a related work inthis area. In Section3 we present the multiple resource utilization problem and the decisionprocedures used by the agents. Some initial experimental results with this decision procedureis presented in Section4. In Section 5 we present a probabilistic analysis explaining theobserved experimental results. In Section 6 we use insights from this probabilistic analysis to2



develop an adaptive decision mechanism that improves system performance. In Section 7 wediscuss the e�ectiveness of two coalition formation schemes that can further improve systemperformance. A discussion on the salient features of the model and possible extensions arepresented in Section 8.2 Related WorkDurfee (Durfee, 1995) has argued for the use of su�cient but not complete informationabout its environment. But, in general, little work has been done to investigate the bene�tsof limiting information access by agents.Hogg and Huberman (Hogg and Huberman, 1991) have analyzed a resource utilizationproblem similar to the one used here to study the e�ects of local decisions on group be-havior (Hogg and Huberman, 1991; Kephart et al., 1989). Kephart et al. (Kephart et al.,1989) show how system parameters like decision rate can produce stable equilibria, dampedoscillations, persistent oscillations, or can lead the system into a chaotic phase. They alsoprovide an analysis of how agents that monitor system behavior and accordingly adjust theirperformance can bring the system closer to a stable behavior. Hogg and Huberman (Hoggand Huberman, 1991) present a robust procedure for suppressing system oscillations usinga reward mechanism based on performance.We share their motivation of achieving stability in a multiagent system when individualagents are making decisions based on self-interest. However, whereas they are interestedin investigating decision procedures that lead to heterogeneity in agent types, we focus oure�orts on identifying a simple decision procedure that can be used by all agents but wouldstill lead to stable systems. On another note, we are particularly interested in evaluating thee�ects of agent decisions based on limited system knowledge on the stability of the system.Thus we have chosen to investigate systems with relatively larger number of resources ascompared to others.We should also clarify that various other forms of heterogeneity including asynchronicityof decision making, di�erent communication delays, di�erent decision algorithms, etc. willhelp speed up convergence and attain group stability. Our purpose in this paper, is to3
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Agents Figure 1: Agents sharing resources.investigate the conjecture that access to less global information can help agents achievestability under certain situations. It should be noted that because local information isdi�erent for di�erent physically distributed agents, limiting agent decisions to the use oflocal information only provides another source of heterogeneity in the system.3 The ModelIn this section we present a simple model of agents sharing a set of identical resources asshown the Figure 1. There are m agents and n identical resources (in general, m > n).At any time instant, an agent use only one resource, and over time tries to move to aresource that is less used by other agents. In this study, we show that when an agent hasless knowledge about the utilization of each resource in the resource set, the contention forresources decreases and results in quicker convergence to stable resource usage.At present we model the knowledge of an agent about the resources by using an r-window. An r-window is a window through which an agent can observe the load on some ofits neighboring resources. At each time step, each agent has to make the following decision:whether it should continue to use the present resource or should it move to another resourcein its r-window with less utilization.The model makes a few basic assumptions. We assume that that all resources are equiv-alent. Moreover, resources are neither introduced nor eliminated during the life time of theagents. All agents remain active and they make their decisions synchronously.We now discuss the decision procedure we use to determine the resource to be used by4



an agent in the next time step. It can be shown that a deterministic and greedy decisionprocedure of choosing the resource with the lowest utilization in the r-window will lead tosystem oscillations. Hence, we are motivated to use a probabilistic decision procedure. Theprobability that an agent will shift from the current resource to another resource is inverselyproportional to the di�erence of the usage of these two resource. The particular procedurethat we use �rst calculates the probability of moving to each of the resources in the r-window,and then normalizes theses values by the corresponding sum. The probability of an agentthat decides to continue to use the same resource i is given by:fii = 11 + � expri��� ; (1)where ri is the number of agents currently using resource i (this is also the utilization ofor load on that resource), and � , �, and � are control parameters. On the other hand, theprobability of moving to another resource j 6= i is given by:fij = 8>><>>: 1 � 11+� expri�rj��� if j 2 Wi & ri > rj,0 otherwise, (2)where Wi are the resources within the r-window of an agent using resource i. Now, theprobability that an agent ak occupying a resource i will occupy a resource j in the next timestep is given by normalizing the above terms:Pr(i; j) = fijPj fij : (3)Our conjecture for the behavior of the group is as follows: the larger the r-window, themore will be the contention for the lesser used resources at any given point in time. This,in turn will lead to lesser in the system, which will take more time to reach an optimalequilibrium state. We now present results from some initial experiments we ran to verifythis conjecture. 5



0

500

1000

1500

2000

2500

3000

3500

4000

3 4 5 6 7 8 9

Co
nv

erg
en

ce

Windowsize

variable

fixed

no-coalition

Figure 2: Number of steps to convergence for di�erent r-window sizes and with or withoutthe use of coalitions.4 ResultsWe assume that the resources are arranged in a ring and each agent knows the number ofagents using the resource it is using and the neighboring resources within the r-window tothe left and right. Each time step consists of all agents making a decision regarding whichresource to use next. In Figure 2 we present experimental results with 27 agents using 9resources. For now, consider the plot labeled \no-coalition" (the other plots will be discussedin Section 6). The data for these plots are averaged over 10 random initial assignments ofagents to resources. Starting from r-window size of 3, as we increase the size of the window to9, we observe that the system takes much more time on the average to stabilize. The systemcan only converge to the optimal state with uniform distribution of agents to resources. Thisis the only state for which the probabilities for any agent moving out of any resource is zero.It is clear from the �gure that increasing the window size leads to considerable increase inthe time taken by the system to converge to a stable state.Figure 3 presents the number of agents occupying resource 1 at di�erent time steps withr-window sizes of 3, 5, 7, and 9 respectively. These �gures con�rm our experimentation thattogether with taking more time to converge, the variation in the number of agents occupying6
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lFigure 4: Resource i has d agents more than every other resource in its r-window.the Figure 4). We further assume that n agents are using that resource at a given instanceof time. Let X be a random variable corresponding the number of agents who will not leavethe resource in the next time step. Therefore, values for X follow a binomial distributionwith probability Pr(i; i). The expected value of X is therefore given by:E[X] = nPr(i; i); (4)and the variance of X is given by:V ar[X] = nPr(i; i)(1� Pr(i; i)): (5)Similarly, as the Figure 5 shows, the resource i is being less utilized when compared withits neighbors. Obviously there will be a tendency of an agent who is currently not usingi to move to resource i. Let Y be the random variable corresponding to the number ofagents who will move into resource i in the next time step. Therefore values for Y follow abinomial distribution with the probability Pj 6=i Pr(j; i). We can also think of Y as a sum ofseveral independent binomially distributed random variables, Yji, where Yji corresponds tothe number of agents who will move into resource i from resource j in the next time step.Yji has an expected value of nPr(j; i) and a variance of nPr(j; i)(1 � Pr(j; i)). Therefore,the expected values of Y is given by:E[Y ] =Xj 6=i nPr(j; i): (6)8
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lFigure 5: Resource i has d agents less than every other resource in the r-window.And the corresponding variance is:V ar[Y ] =Xj 6=i nPr(j; i)(1 � Pr(j; i)): (7)Let us now analyze the implications of these analysis. Figure 6 plots the expressions inEquations 4 and 5 for di�erent d values and di�erent r-window sizes. The plot for expecta-tions of X con�rms the intuition that with larger window sizes and larger d values (di�erencebetween current resource load and the loads on the neighboring resources), a larger numberof agents are expected to move out of the current resource. But �gure 6 also reveals a veryinteresting phenomena. For large window sizes, the variance of the number of agents stayingin the resource increases as the di�erence between the loads of the current and neighboringresource decreases. The two plots together can be used to draw the following conclusion:initially the agents will quickly spread out from a highly utilized resource to neighboring, lessutilized resources. But when all resources have approximately the same load, high variancewill probably cause some imbalance in the resource usages leading the system back towardsthe initial situation. This kind of behavior can go on in a cyclical manner for some time.The situation is precisely the opposite for small window sizes: here, the variance decreaseswith the decreasing di�erence between the current and the neighboring resource loads. Thismeans that even though there is a relatively slower convergence towards a near-uniform dis-tribution of agents to resources (as inferred from the expectations plot), there is a continuing9
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0

10

20

30

40

50

60

70

80

90

100

110

120

2 4 6 8 10 12 14 16

Ex
pe

cta
tio

n

r-window

d=8

d=7

d=6

d=5

d=4

d=3

d=2

d=1
0

0.5

1

1.5

2

2.5

3

2 4 6 8 10 12 14 16

Va
ria

nc
e

r-window

d=1
d=2

d=3

d=4

d=5

d=6

d=7

d=8Figure 7: Expectation and variance of an agent moving to the less used resource (corre-sponding to Figure 5), and l + d = 10.brie
y revisit the analysis here to precisely identify the scope for improvement. From Figure 6we observed that for large r-windows, the variance of the number of agents staying in theresource increases as the di�erence between the utilization of the current resource usage andthe neighboring resource usages decreases. The opposite is the case for small r-windows.Also, the expected value of the number of agents leaving the resource more loaded than itsneighbors is higher for large rather than small r-windows. Hence, if the initial distribution ofagents to resources had a marked imbalance and if the agents were using a large r-window,agents will quickly spread out to a near uniform distribution. At this point, the discrepancyof usage between neighboring resources will be much less than it was at the initial state.Now, from Figure 6, agents will be better served to use a small, rather than large, r-windowto reduce the variability in their movements in the next time steps (which is equivalent to areduction in the variance in the occupancy of the associated resources). Therefore, a likelye�ective adaptive agent strategy would be to initially use a large r-window size, but quicklyreduce this size after some initial movements.Admittedly, our analysis is based on idealized scenarios in Figures 4 and 5, where all butone resource have the same occupancy. Our conjecture is that the analysis will still apply,with some loss of accuracy, to more realistic situations where resource occupancies are moregraded. To verify our conjecture, we ran some experiments with the following adaptive agent11



decision mechanism for dynamically selecting an r-window size: agents initially start with anr-window which includes all resources; any time an agent changes resources consecutively fork time steps, it narrows its r-window size down to 3 (i.e., from thereon the agent considersonly the load of the current and neighboring resource when making a movement decision).The motivation for this strategy is that if an agent continually jumps from one resource toanother, the system is unstable. Assuming that using too much global information is thecause of this instability, the agent decides to focus on its current neighborhood.In a set of exploratory experiments we observed best results when we used k = 1 inthe above-mentioned decision mechanism, i.e., each agent reduced the window size the �rsttime it moves from the resource that it initially occupied. Subsequently, we ran experimentsusing both adaptive and static window sizes and with 27 agents and 9 resources. In our priorexperiments the initial allocation of agents to resources was obtained by using a uniformlydistributed random number generator. This resulted in almost uniform resource usage tobegin with. However, we are more interested in evaluating agent strategies when the initialdistribution is particularly skewed. We generated 10 random scenarios each for skewed anduniform initial distributions of agents to resources. For each initial distribution, experimentswere run with 10 random seeds of the random number generator (the agent algorithms userandom numbers to make probabilistic choices). Table 1 presents results from these setof experiments. The table clearly demonstrates the e�ectiveness of our proposed adaptivestrategy for choosing r-window size over the best static-window size choice (always using awindow size of 3).Initial distribution Window size = 3 Adaptive window sizing ImprovementSkewed 47.62 37.8 21%Uniform 45.74 44.42 3%Table 1: Average time steps taken to convergence with adaptive and static window sizes.Experiments involved 27 agents and 9 resources.It is instructive to note that while the improvement of the adaptive scheme over thestatic choice is remarkable when the initial agent distribution is skewed, the corresponding12



improvement for uniform initial agent distribution is minimal. But this observation lendsfurther credence to the accuracy of our probabilistic analysis, which was developed withskewed distributions.7 Forming coalitionsIn the previous section, we observed that agents with a limited view of global scenarioconverged faster to optimal states. However, this work assumes that agents independentlymake decisions based on observed resource utilizations. The results showed that in caseswhere the window size is large the system took signi�cantly longer to converge (in somecases the system did not converge even after a large number of time steps). One reason forthis delayed convergence is that the individual agents had no information about the decisionof the other agents. As a result, all the agents tried to move towards the least utilized resourcewithin their view thus letting the previously under-utilized resource to become over-utilizedin the next time step and vice versa.We conjectured that some of the convergence problems mentioned above can be alleviatedby forming coalitions of agents, where agents belonging to a given coalition will cooperativelydecide on their next move. For example, within any such coalition, agents may take turnsin selecting which resource they are going to occupy in the next time step and then informother agents in the coalition about that decision. Thus, agents will have more up-to date andaccurate information about the likely resource usages in the next time step, and hence arein a position to make a more e�ective movement decision. In the extreme case, if all agentsform one coalition and the R-window included all resources, each agent will have a completeand correct global information at all times, and the system will immediately converge if eachagent moves to the least used resource at the time it makes its movement decision.We studied two modes of forming coalitions: in the �rst mode agents were randomlypartitioned into equal-sized coalitions before the start of the simulation and no agents everchanged coalitions (we use a coalition size of 5); in the second mode, agents occupying thesame resource at any given time formed a coalition and hence coalitions changed from onetime step to the next. In both the groups, an individual agent's movement decision is not13



only based on the current utilization of the resources within its r-window but is also guidedby the actual status of those resources after some of the other agents in its group havedecided on their moves.We ran experiments for both these coalition types by varying the window size and keepingthe number of agents and resources constant. The results of these experiment averaged over10 runs are shown in the Figure 2. The convergence patterns with two types of coalitions werevery similar to the convergence pattern with no coalitions, i.e., increasing the window stillresulted in slower convergence. Runs with coalitions, however, converged faster than runswith no coalitions. This was particularly true for larger window sizes where runs withoutcoalition often took extremely long times to converge. In fact, we believe that for even largerwindow sizes (this will require more resources too) and number of agents, the system maynot converge if some form of coalitions are not used.When comparing the performance of two coalition types, we �nd the variable coalitionsconverge faster than �xed coalitions. This observation can be explained by two reasons:� Agents belonging to a static coalition may be dispersed over all the resources at anygiven point in time. So, the movement decision of any one such agent may not impactall the other agents in the coalition (the agent may be moving from and to resourcesboth of which may be outside the window of some of the other agents). Hence, onlysome of the information that is shared among the coalition members is useful. On theother hand, in the variable coalition case, movement decisions of any one agent impactsevery other agent in the coalition. Thus, for same sized coalitions, agents in variablecoalitions take more informed decisions compared to agents in �xed coalitions.� The size of �xed coalitions is determined a priori, whereas the size of variable coalitiondynamically changes. The larger the load on a resource, the larger is the size of thecorresponding variable coalition, and the more informed are the decisions made bycorresponding coalition members. Hence, our proposed variable coalition formationscheme allows agents information about decisions made by other agents precisely whenit is critical. This allows variable coalitions to converge faster.The more general lesson from this set of experiments is that in order for agents to be14




exible to changing environmental demands, it is more appropriate to provide a coalition for-mation and dissolution mechanism that utilizes current problem loads and inter-relationshipsbetween agents. As these critical factors change over time, it is likely to be myopic to pre-assign the coalition to which an agent should belong over its lifetime.8 Conclusions and Future WorkIn this study we investigated the problem of resource utilization and global performancebased on limited local information. The agents with a limited view of global scenario con-verged faster to optimal states. We provide a probabilistic analysis that sheds some light onthis interesting phenomenon. We argued in favor of dynamic, rather than static, coalitionformation mechanism to improve system performance. It appears that strategic, limitedusage of local knowledge may be an e�ective way to address stability issues in multiagentsystems.To \bury the head in the sand" and ignore most of the information (in this case of usinga small r-window) does not appear to be a sound principle in general. However, to observewhat neighbors are doing may be good precept, but to base our decisions closely on whatis happening anywhere in the whole wide world can be misleading at times, and can bedetrimental in speci�c circumstances. One can easily �nd the e�ectiveness of such principlesin daily chores of our lives. To name a few: a visit to a ticket counter, which highway to taketo work, computational jobs waiting in various queues for their turn to get processed, etc.Similarly, we believe that a homogeneous agent society utilizing a set of limited resourcesmight be able to utilize their resources e�ciently by avoiding complete knowledge about theentire set of resource.Analyzing the data from these experiments suggests some further investigations on theinterplay between limited global knowledge and group stability. We discuss some of ourplanned experiments below:Graded movements: We can also model agents with graded inertia of rest. These agentsprefer to shift to a nearer resource with less utilization rather than to a more distantresource with negligible utilization. A more uniform treatment of this approach would15



be to add a notion of stability to the probability calculation, i.e., the further o� aresource is located from the current resource, the less will be the probability of makingthe move given the same di�erence in resource utilizations. Agents may have largewindow size, but is more and more reluctant to move further away from its currentchoice. This mechanismassumes a distance metric between choices. A simple extensionto Equation 1 can be shown as follows:fij = 8>><>>: 1 � 11+� expri�rj�ij if j 2 Wi & ri > rj,0 otherwise, (8)where �ij is the distance between resource i and resource j.Choice versus information: In this paper, we have assumed that an agent moves only toa resource within its r-window. However, r-window is only used as a �lter to restrictthe information available to agents. One can imagine \adventurous" agents decidingto move to resources for which they have no current load information. This separationof choice from available information will be an interesting point to study and we planto investigate scenarios where agents perceive information only from their r-windows,but are free to choose any resource to move to.Acknowledgments:This work has been supported, in part, by the National Science Foundation under a ResearchInitiation Award IRI-9410180 and a CAREER award IRI-9702672.ReferencesBartos, O. J. (1967). Simple Models of Group Behavior. Columbia University Press, NewYork, NY.Durfee, E. (1995). Blissful ignorance: Knowing just enough to coordinate well. In First In-ternational Conference on Multiagent Systems, pages 406{413, Menlo Park, CA. AAAIPress/MIT Press. 16
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