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Abstract

Social agents, both human and computational, inhabiting a world con-

taining multiple active agents, need to coordinate their activities. This is

because agents share resources, and without proper coordination or “rules of

the road”, everybody will be interfering with the plans of others. As such, we

need coordination schemes that allow agents to effectively achieve local goals

without adversely affecting the problem-solving capabilities of other agents.

Researchers in the field of Distributed Artificial Intelligence (DAI) have de-

veloped a variety of coordination schemes under different assumptions about

agent capabilities and relationships. Whereas some of these research have

been motivated by human cognitive biases, others have approached it as an

engineering problem of designing the most effective coordination architec-

ture or protocol. We evaluate individual and concurrent learning by mul-

tiple, autonomous agents as a means for acquiring coordination knowledge.

We show that a uniform reinforcement learning algorithm suffices as a coor-

dination mechanism in both cooperative and adversarial situations. Using a

number of multiagent learning scenarios with both tight and loose coupling

between agents and with immediate as well as delayed feedback, we demon-

strate that agents can consistently develop effective policies to coordinate

their actions without explicit information sharing. We demonstrate the vi-

ability of using both the Q-learning algorithm and genetic algorithm based

classifier systems with different payoff schemes, namely the bucket brigade

algorithm (BBA) and the profit sharing plan (PSP), for developing agent

coordination on two different multi-agent domains. In addition, we show

that a semi-random scheme for action selection is preferable to the more

traditional fitness proportionate selection scheme used in classifier systems.
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1 Introduction

One of the primary goals of researchers in the artificial intelligence (AI) community is to

develop autonomous agents that are knowledgeable and cognizant enough to carry out at

least routine activities performed by humans. The problem, however, is an extremely difficult

one, and decades of research on related areas have only served to highlight its complexity

and magnitude. While researchers are developing interesting results in crucial areas like

knowledge representation, planning, learning, non-monotonic reasoning, cooperative problem

solving etc., it is equally important to analyze and experiment with results from one such

subfield to benefit one or more of the other ones. Isolated, and domain-specific developments

in any one of the sub-fields of AI is not going to go a long way to advancing the whole field.

In this paper, we will demonstrate how noteworthy advances in one particular sub-field

of AI can be effectively used in another subfield to provide agents with knowledge required

to solve a difficult problem. We will be applying recent research developments from the

reinforcement learning literature to the coordination problem in multiagent systems. In a

reinforcement learning scenario, an agent chooses actions based on its perceptions, receives

scalar feedback based on past actions, and is expected to develop a mapping from per-

ceptions to actions that will maximize feedback. Multiagent systems are a particular type

of distributed AI system [2, 29], in which autonomous intelligent agents inhabit a world

with no global control or globally consistent knowledge. In contrast to cooperative problem

solvers [13], agents in multiagent systems are not pre-disposed to help each other out with

all the resources and capabilities that they possess. These agents may still need to coordi-

nate their activities with others to achieve their own local goals. They could benefit from

receiving information about what others are doing or plan to do, and from sending them

information to influence what they do.

Whereas previous research on developing agent coordination mechanisms focused on off-

line design of agent organizations, behavioral rules, negotiation protocols, etc., it was recog-

nized that agents operating in open, dynamic environments must be able to flexibly adapt to

changing demands and opportunities [29, 44, 54]. In particular, individual agents are forced

to engage with other agents which have varying goals, abilities, composition, and lifespan. To
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effectively utilize opportunities presented and avoid pitfalls, agents need to learn about other

agents and adapt local behavior based on group composition and dynamics. For machine

learning researchers, multiagent learning problems are challenging, because they violate the

stationary environment assumptions used by most machine learning systems. As multiple

agents learn simultaneously, the feedback received by the same agent for the same action

varies considerably. The stationary environment assumption used by most current machine

learning systems are not well-suited for such rapidly changing environments.

In this paper, we discuss how reinforcement learning techniques for developing policies

to optimize environmental feedback, through a mapping between perceptions and actions,

can be used by multiple agents to learn coordination strategies without having to rely on

shared information. These agents work in a common environment, but are unaware of the

capabilities of other agents and may or may not be cognizant of goals to achieve. We

show that through repeated problem-solving experience, such agents can develop policies

to maximize environmental feedback that can be interpreted as goal achievement from the

viewpoint of an external observer. More interestingly, we demonstrate that in some domains

these agents develop policies that complement each other.

To evaluate the applicability of reinforcement learning schemes for enabling multiagent

coordination, we chose to investigate a number of multiagent domains with varying envi-

ronmental characteristics. In particular, we designed environments in which the following

characteristics were varied:

Agent coupling: In some domains the actions of one agent strongly and frequently affect

the plans of other agents (tightly coupled system), whereas in other domains the actions

of one agent only weakly and infrequently affect the plans of other agents (loosely

coupled system).

Agent relationships: Agents in a multiagent system can have different kinds of mutual

relationships:

• they may act in a group to solve a common problem (cooperative agents),

• they may not have any preset dispositions towards each other but interact because

they use common resources (indifferent agents),
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• they may have opposing interests (adversarial agents).

For discussions in this paper, we have group the latter two class of domains as non-

cooperative domains.

Feedback timing: In some domains, the agents may have immediate knowledge of the

effects of their actions, whereas in others they may get the feedback for their actions

only after a period of delay.

Optimal behavior combinations: How many behavior combinations of participating agents

will optimally solve the task at hand? This value varies from one to infinite for different

domains.

In addition, in this paper we concentrate exclusively on domains in which agents have

little or no pre-existing domain expertise, and have no information about the capabilities

and goals of other agents. These assumptions make the coordination problem particularly

hard. This is particularly evident from the fact that almost all currently used coordina-

tion mechanisms rely heavily on domain knowledge and shared information between agents.

The goal of our work is not to replace the previously developed coordination schemes, but

to complement them by providing new coordination techniques for domains where the cur-

rently available schemes are not effective. In particular, domains where agents know little

about each other provide a difficult challenge for currently used coordination schemes. Our

contention is that problem solving performance or the feedback received from the environ-

ment can be effectively used by reinforcement based learning agents to circumvent the lack

of common knowledge.

To verify our intuitions more rigorously, we decided to investigate two well-known rein-

forcement learning schemes: the Q-learning algorithm developed by Watkins [51], and the

classifier systems method developed by Holland. Whereas the Q-learning algorithm was

inspired by the theory of dynamic programming for optimization, classifier systems arose

from an interesting blend of rule-based reasoning and computational mechanisms inspired

by natural genetics [4, 25]. Q-learning and classifier systems have been proposed as two

general reinforcement learning frameworks for achieving agent coordination in a multiagent
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system. This research opens up a new dimension of constructing coordination strategies for

multiagent systems.

At this point, we would like to emphasize the difference between this work and other

recent publications in the nascent area of multiagent learning (MAL) research. Previous pro-

posals for using learning techniques to coordinate multiple agents have mostly relied on using

prior knowledge [5], or on cooperative domains with unrestricted information sharing [47].

A significant percentage of this research have concentrated on cooperative learning between

communicating agents where agents share their knowledge or experiences [16, 38, 37, 50].

Some researchers have used communication to aid agent groups jointly decide on their course

of actions [52]. The isolated instances of research in MAL that do not use explicit communi-

cation have concentrated on competitive, rather than cooperative, domains [7, 30, 40]. We

strongly believe that learning coordination policies without communication has a significant

role to play in competitive as well as cooperative domains. There is little argument over

the fact that communication is an invaluable tool to be used by agent groups to coordinate

their activities. At times communication is the most effective and even perhaps the only

mechanism to guarantee coordinated behavior. Though communication is often helpful and

indispensable as an aid to group activity, it does not guarantee coordinated behavior [22],

is time-consuming and can detract from other problem solving activity if not carefully con-

trolled [12]. Also, agents overly reliant on communication will be severely affected if the

quality of communication is compromised (broken communication channels, incorrect or

deliberately misleading information, etc.). At other times communication can be risky or

even fatal (as in some combat situations where the adversary can intercept communicated

messages).

We believe that even when communication is feasible and safe, it may be prudent to

use it only as necessary. For example, if an agent is able to predict the behavior of other

agents from past observations, it can possibly adjust its own plans to use a shared resource

without the need for explicitly arriving at a contract using communication that consumes

valuable time (to have performance guarantees, though, contracts arrived at using commu-

nication is possibly the most effective procedure; most of the problem solving activities by

agents, however, do not involve hard guarantees or deadlines). We should strive to realize
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the maximum potential of the system without using communication. Once that has been

accomplished, communication can be added to augment the performance of the system to

the desired efficiency level. Such a design philosophy will lead to systems where agents do

not flood communication channels with unwarranted information and agents do not have to

shift through a maze of useless data to locate necessary and time-critical information. With

this goal in mind we have investigated the usefulness of acquiring coordination strategies

without sharing information [43, 45]. We expand on this body of work in this paper, and

explore the advantages and limitations of learning without communication as a means to

generating coordinated behavior in autonomous agents.

The rest of the paper is organized as follows: Section 2 presents highlights of the previous

approaches to developing coordination strategies for multiple, autonomous agents; Section 3

provides a categorization of multiagent systems to identify different learning scenarios and

presents a sampling of prior multiagent learning research; Section 4 reviews the reinforcement

learning techniques that we have utilized in this paper; Sections 5, 6, and 7 present results

of experiments with Q-learning and genetic algorithm based reinforcement learning systems

on a block pushing, robot navigation, and resource sharing domains respectively; Section 8

summarizes the lessons learnt from this research and outlines future research directions.

2 Coordination of multiple agents

In a world inhabited by multiple agents, coordination is a key to group as well as individual

success. We need to coordinate our actions whenever we are sharing goals, resources, or

expertise. By coordination we mean choosing one’s own action based on the expectation of

others’ actions. Coordination is essential for cooperative, indifferent, and even adversarial

agents. As computer scientists, we are interested in developing computational mechanisms

that are domain independent and robust in the presence of noisy, incomplete, and out-of-

date information. Research in the area of multiagent systems has produced techniques for

allowing multiple agents, which share common resources, to coordinate their actions so that

individually rational actions do not adversely affect overall system efficiency [2, 13, 17, 26].

Coordination of problem solvers, irrespective of whether they are selfish or cooperative,
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is a key issue to the design of an effective multiagent system. The search for domain-

independent coordination mechanisms has yielded some very different, yet effective, classes

of coordination schemes. The most influential classes of coordination mechanisms developed

to date are the following:

• protocols based on contracting [9, 48]

• distributed search formalisms [14, 57]

• organizational and social laws [15, 32, 33]

• multi-agent planning [11, 39]

• decision and game theoretic negotiations [18, 19, 58]

• linguistic approaches [8, 55]

Whereas some of these work uses architectures and protocols designed off-line [15, 46, 48] as

coordination structures, others acquire coordination knowledge on-line [11, 19]. Almost all

of the coordination schemes developed to date assume explicit or implicit sharing of infor-

mation. In the explicit form of information sharing, agents communicate partial results [11],

speech acts [8], resource availabilities [48], etc. to other agents to facilitate the process of

coordination. In the implicit form of information sharing, agents use knowledge about the

capabilities of other agents [15, 18, 58] to aid local decision-making. Though each of these

approaches has its own benefits and weaknesses, we believe that the less an agent depends

on shared information, and the more flexible it is to the on-line arrival of problem-solving

and coordination knowledge, the better it can adapt to changing environments. As flexibility

and adaptability are key aspects of intelligent and autonomous behavior, we are interested

in investigating mechanisms by which agents can acquire and use coordination knowledge

through interactions with its environment (that includes other agents) without having to

rely on shared information.

One can also argue that pre-fabricated coordination strategies can quickly become inad-

equate if the system designer’s model of the world is incomplete/incorrect or if the environ-

ment in which the agents are situated can change dynamically. Coordination strategies that
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incorporate learning and adaptation components will be more robust and effective in these

more realistic scenarios. Thus agents will be able to take advantage of new opportunities

and deal with new contingencies presented by the environment which cannot be foreseen at

design time.

3 Learning in multiagent systems

To highlight learning opportunities inherent in most multiagent systems, we develop here a

categorization of multiagent problems that can be used to characterize the nature of learning

mechanisms that should be used for these problems. The categorization presented in Table 1

is not meant to be the only or even the most definitive taxonomy of the field. The dimen-

sions we consider for our taxonomy are the following: agent relationships (cooperative vs.

non-cooperative), use of communication (agents explicitly communicating or not). Within

cooperative domains again, we further categorize domains based on decision-making author-

ities (individual vs. shared). These dimensions are not necessarily completely orthogonal,

e.g., shared decision making may not be feasible without the use of explicit communication.

We use the term cooperative relationship to refer to situations where multiple agents

are working towards a common goal. Though there may be local goals, these are in fact,

subgoals of the common goal (even if different subgoals interfere). A number of different

domains fall under the non-cooperative spectrum. These include competitive scenarios (one

agent’s gain is another agent’s loss; need not be zero-sum), as well as scenarios where agents

coordinate only to avoid conflicts.

As mentioned before, shared learning by a group of cooperative agents have received the

most attention in MAL literature [16, 37, 52]. Others have looked at each agent learning

individually but using communication to share pertinent information [6, 38, 50]. Learning

to cooperate without explicit information sharing can be based on primarily environmental

feedback [45] or from observation of other agents in action [23]. Researchers have investigated

two approaches to learning without explicit communication in non-cooperative domains: (a)

treating opponents as part of the environment without explicit modeling [43], (b) learning

explicit competitor models [30, 40]. Little work has been done to date in learning to compete
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with explicit communication. Possible scenarios to investigate in this area include learning

the strengths and weaknesses of the competitor from intercepted communication, or pro-

actively probing the opponent to gather more information about its preferences.

Even previous work on using reinforcement learning for coordinating multiple agents [50,

52] have relied on explicit information sharing. We, however, concentrate on systems where

agents share no problem-solving knowledge. We show that although each agent is indepen-

dently using reinforcement learning techniques to optimizing its own environmental reward,

global coordination between multiple agents can emerge without explicit or implicit infor-

mation sharing. These agents can therefore act independently and autonomously, without

being affected by communication delays (due to other agents being busy) or failure of a key

agent (who controls information exchange or who has more information), and do not have to

be worry about the reliability of the information received (Do I believe the information re-

ceived? Is the communicating agent an accomplice or an adversary?). The resultant systems

are, therefore, robust and fault-tolerant.

Schaerf et al. have studied the use of reinforcement learning based agents for load balanc-

ing in distributed systems [41]. In this work, a comprehensive history of past performance is

used to make informed decisions about choice of resources to submit jobs to. Parker [36] has

studied the emergence of coordination in simulated robot groups by using simple adaptive

schemes that alter robot motivations. A major difference from our work is that the simulated

robots in this work build explicit models of other robots. Other researchers have used rein-

forcement learning for developing effective groups of physical robots [34, 56]. Mataric [34]

concentrates on using intermediate feedback for subgoal fulfillment to accelerate learning. In

contrast with our work, the evaluation of learning effectiveness under varying degrees of in-

teraction between the agents is not the focus of this work. The work by Yanco and Stein [56]

involves using reinforcement learning techniques to evolve effective communication proto-

cols between cooperating robots. This is complementary to our approach of learning to

coordinate in the absence of communication.

Though our agents can be viewed as a learning automaton, the scalar feedback received

from the environment prevents the use of results directly from the field of learning au-

tomata [35]. Recent work on theoretical issues of multiagent reinforcement learning promises
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to produce new frameworks for investigating problems such as those addressed in this pa-

per [21, 42, 53].

4 Reinforcement learning

In reinforcement learning problems [1, 27] reactive and adaptive agents are given a description

of the current state and have to choose the next action from a set of possible actions so as

to maximize a scalar reinforcement or feedback received after each action. The learner’s

environment can be modeled by a discrete time, finite state, Markov decision process that

can be represented by a 4-tuple 〈S,A, P, r〉 where P : S×S×A 7→ [0, 1] gives the probability

of moving from state s1 to s2 on performing action a, and r : S × A 7→ < is a scalar reward

function. Each agent maintains a policy, π, that maps the current state into the desirable

action(s) to be performed in that state. The expected value of a discounted sum of future

rewards of a policy π at a state x is given by V π
γ

def
= E{

∑
∞

t=0 γtrπ
s,t}, where rπ

s,t is the random

variable corresponding to the reward received by the learning agent t time steps after if starts

using the policy π in state s, and γ is a discount rate (0 ≤ γ < 1).

Various reinforcement learning strategies have been proposed using which agents can de-

velop a policy to maximize rewards accumulated over time. For evaluating the classifier sys-

tem paradigm for multiagent reinforcement learning, we compare it with the Q-learning [51]

algorithm, which is designed to find a policy π∗ that maximizes V π
γ (s) for all states s ∈ S. The

decision policy is represented by a function, Q : S ×A 7→ <, which estimates long-term dis-

counted rewards for each state–action pair. The Q values are defined as Qπ
γ(s, a) = V a;π

γ (s),

where a; π denotes the event sequence of choosing action a at the current state, followed by

choosing actions based on policy π. The action, a, to perform in a state s is chosen such

that it is expected to maximize the reward,

V π∗

γ (s) = max
a∈A

Qπ∗

γ (s, a) for all s ∈ S.

If an action a in state s produces a reinforcement of R and a transition to state s′, then the

corresponding Q value is modified as follows:

Q(s, a)← (1− β) Q(s, a) + β (R + γ max
a′∈A

Q(s′, a′)). (1)
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The above update rule is similar to Holland’s bucket-brigade [25] algorithm in classifier

systems and Sutton’s temporal-difference [49] learning scheme. The similarities of Q-learning

and classifier systems have been analyzed in [10].

Classifier systems are rule based systems that learn by adjusting rule strengths from

feedback and by discovering better rules using genetic algorithms. In this paper, we will use

simplified classifier systems where all possible message action pairs are explicitly stored and

classifiers have one condition and one action. These assumptions are similar to those made

by Dorigo and Bersini [10]; we also use their notation to describe a classifier i by (ci, ai),

where ci and ai are respectively the condition and action parts of the classifier. St(ci, ai)

gives the strength of classifier i at time step t. We first describe how the classifier system

performs and then discuss two different feedback distribution schemes, namely the Bucket

Brigade algorithm (BBA), and the Profit Sharing Plan (PSP).

All classifiers are initialized to some default strength. At each time step of problem

solving, an input message is received from the environment and matched with the classifier

rules to form a matchset,M. One of these classifiers is chosen to fire and based on its action,

a feedback may be received from the environment. Then the strengths of the classifier rules

are adjusted. This cycle is repeated for a given number of time steps. A series of cycles

constitute a trial of the classifier system. In the BBA scheme, when a classifier is chosen to

fire, its strength is increased by the environmental feedback. But before that, a fraction α of

its strength is removed and added to the strength of the classifier who fired in the last time

cycle. So, if classifier i fires at time step t, produces external feedback of R, and classifier j

fires at the next time step, the following equations gives the strength update of classifier i:

St+1(ci, ai) = (1− α) ∗ St(ci, ai) + α ∗ (R + St+1(cj, aj)).

We now describe the profit sharing plan (PSP) strength-updating scheme [20] used in

classifier systems. In this method, problem solving is divided into episodes in between

receipts of external reward. A rule is said to be active in a period if it fired in at least one

of the cycles in that episode. At the end of episode e, the strength of each active rule i in

that episode is updated as follows:

Se+1(ci, ai) = Se(ci, ai) + α ∗ (Re − Se(ci, ai)),
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where Re is the external reward received at the end of the episode. We have experimented

with two methods of choosing a classifier to fire given the matchset. In the more traditional

method, a classifier i ∈M at time t is chosen with a probability given by St(ci,ai)∑
d∈M

St(cd,ad)
. We

call this fitness proportionate PSP or PSP(FP). In the other method of action choice, the

classifier with the highest fitness in M is chosen 90% of the time, and a random classifier

fromM is chosen in the rest 10% cases (Mahadevan uses such an action choosing mechanism

for Q-learning in [31]). We call this a semi-random PSP or PSP(SR).

For the Q-learning algorithm, we stop a run when the algebraic difference of the policies

at the end of neighboring trials is below a threshold for 10 consecutive trials. With this

convergence criterion, however, the classifier systems ran too long for us to collect reasonable

data. Instead, every 10th trial, we ran the classifier system (both with BBA and PSP) with

a deterministic action choice over the entire trial. We stopped a run of the classifier system

if the differences of the total environmental feedback received by the system on neighboring

deterministic trials were below a small threshold for 10 consecutive deterministic trials.

We perform an in-depth study of the effectiveness of using Q-learning by concurrent

learners to develop effective coordination in a block pushing domain. We also compare the

performance of classifier systems and Q-learning on a resource sharing and a robot navigation

domain. The characteristics of these three domains are as follows:

Block pushing: Concurrent learning by two agents with immediate environmental feed-

back; strongly coupled system; multiple optimal behaviors.

Resource sharing: One agent learning to adapt to another agent’s behavior with delayed

environmental feedback; strongly coupled system; single optimal behavior.

Robot navigation: Concurrent learning by multiple agents with immediate environmental

feedback; variable coupling; multiple optimal behaviors.

5 Block pushing problem

In this problem, two agents, a1 and a2, are independently assigned to move a block, b, from

a starting position, S, to some goal position, G, following a path, P , in Euclidean space.
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The agents are not aware of the capabilities of each other and yet must choose their actions

individually such that the joint task is completed. The agents have no knowledge of the

system physics, but can perceive their current distance from the desired path to take to

the goal state. Their actions are restricted as follows: agent i exerts a force ~Fi, where

0 ≤ |~Fi| ≤ Fmax, on the object at an angle θi, where 0 ≤ θ ≤ π. An agent pushing with

force ~F at angle θ will offset the block in the x direction by | ~F | cos(θ) units and in the y

direction by | ~F | sin(θ) units. The net resultant force on the block is found by vector addition

of individual forces: ~F = ~F1 + ~F2. We calculate the new position of the block by assuming

unit displacement per unit force along the direction of the resultant force. The new block

location is used to provide feedback to the agent. If (x, y) is the new block location, Px(y) is

the x-coordinate of the path P for the same y coordinate, ∆x = |x− Px(y)| is the distance

along the x dimension between the block and the desired path, then K ∗a−∆x is the feedback

given to each agent for their last action (we have used K = 50 and a = 1.15).

agent 1 agent 2

block

ideal

path

goal 

position

field of play

at each time step each agent pushes with some force at a certain angle

potential

path

θ 2

θ 2
θ 2

θ 1

θ 1

F
1

cos

θ 1F
1

sin F
2

sin

F
2

cos

θ

FF sin

F cos θ

θ

Agent 1 Agent 2

Combined effect

Figure 1: The block pushing problem

The field of play is restricted to a rectangle with endpoints [0, 0] and [100, 100]. A trial

consists of the agents starting from the initial position S and applying forces until either the

goal position G is reached or the block leaves the field of play (see Figure 1). We abort a
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trial if a pre-set number of agent actions fail to take the block to the goal. This prevents

agents from learning policies where they apply no force when the block is resting on the

optimal path to the goal but not on the goal itself. The agents are required to learn, through

repeated trials, to push the block along the path P to the goal. Although we have used only

two agents in our experiments, the solution methodology can be applied without modification

to problems with arbitrary number of agents.

To implement the policy π we chose to use an internal discrete representation for the

external continuous space. The force, angle, and the space dimensions were all uniformly

discretized. When a particular discrete force or action is selected by the agent, the middle

value of the associated continuous range is used as the actual force or angle that is applied

on the block.

The Block-Pushing problem is a tightly-coupled system, where, at each time step the

outcome of each agent action is dependent on the action of the other agents present in

the system. Using the block-pushing problem, we have conducted experiments on both

cooperative (agents push the block towards a common goal) and non-cooperative (agents vie

with each other to push the block to individual goals) situations.

An experimental run consists of a number of trials during which the system parameters

(β, γ, and K) as well as the learning problem (granularity, agent choices) is held constant.

The stopping criteria for a run is either that the agents succeed in pushing the block to the

goal in N consecutive trials (we have used N = 10) or that a maximum number of trials (we

have used 1500) have been executed. The latter cases are reported as non-converged runs.

The standard procedure in Q-learning literature of initializing Q values to zero is suitable

for most tasks where non-zero feedback is infrequent and hence there is enough opportunity

to explore all the actions. Because a non-zero feedback is received after every action in our

problem, we found that agents would follow, for an entire run, the path they take in the first

trial. This is because they start each trial at the same state, and the only non-zero Q-value

for that state is for the action that was chosen at the start trial. Similar reasoning holds for

all the other actions chosen in the trial. A possible fix is to choose a fraction of the actions

by random choice, or to use a probability distribution over the Q-values to choose actions

stochastically. These options, however, lead to very slow convergence. Instead, we chose

14



to initialize the Q-values to a large positive number. This enforced an exploration of the

available action options while allowing for convergence after a reasonable number of trials.

The primary metric for performance evaluation is the average number of trials taken

by the system to converge. Information about acquisition of coordination knowledge is

obtained by plotting, for different trials, the average distance of the actual path followed

from the desired path. Data for all plots and tables in this paper have been averaged over

100 runs.

5.1 Experiments in Cooperative Domain

Extensive experimentation was performed on the block-pushing domain. The two agents

were assigned the task of pushing the block to the same goal location. The following sections

provide further details on the experimental results.

5.1.1 Choice of system parameters

If the agents learn to push the block along the desired path, the reward that they will receive

for the best action choices at each step is equal to the maximum possible value of K. The

steady-state values for the Q-values (Qss) corresponding to optimal action choices can be

calculated from the equation:

Qss = (1− β) Qss + β (K + γ Qss).

Solving for Qss in this equation yields a value of K
1−γ

. In order for the agents to explore

all actions after the Q-values are initialized at SI , we require that any new Q value be less

than SI . From similar considerations as above we can show that this will be the case if

SI ≥
K

1−γ
. In our experiments we fix the maximum reward K at 50, SI at 100, and γ at 0.9.

Unless otherwise mentioned, we have used β = 0.2, and allowed each agent to vary both the

magnitude and angle of the force they apply on the block.

The first problem we used had starting and goal positions at (40, 0) and (40, 100) re-

spectively. During our initial experiments we found that with an even number of discrete

intervals chosen for the angle dimension, an agent cannot push along any line parallel to the
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y-axis. Hence we used an odd number, 11, of discrete intervals for the angle dimension. The

number of discrete intervals for the force dimension is chosen to be 10.

On varying the number of discretization intervals for the state space between 10, 15, and

20, we found the corresponding average number of trials to convergence is 784, 793, and 115

respectively with 82%, 83%, and 100% of the respective runs converging within the specified

limit of 1200 trials. This suggests that when the state representation gets too coarse, the

agents find it very difficult to learn the optimal policy. This is because the less the number

of intervals (the coarser the granularity), the more the variations in reward an agent gets

after taking the same action at the same state (each discrete state maps into a larger range

of continuous space and hence the agents start from and ends up in physically different

locations, the latter resulting in different rewards).

5.1.2 Varying learning rate

We experimented by varying the learning rate, β. The resultant average distance of the

actual path from the desired path over the course of a run is plotted in Figure 2 for β values

0.4, 0.6, and 0.8.

In case of the straight path between (40,0) and (40,100), the optimal sequence of actions

always puts the block on the same x-position. Since the x-dimension is the only dimension

used to represent state, the agents update the same Q-value in their policy matrix in succes-

sive steps. We now calculate the number of updates required for the Q-value corresponding

to this optimal action before it reaches the steady state value. Note that for the system to

converge, it is necessary that only the Q-value for the optimal action at x = 40 needs to

arrive at its steady state value. This is because the block is initially placed at x = 40, and so

long as the agents choose their optimal action, it never reaches any other x position. So, the

number of updates to reach steady state for the Q-value associated with the optimal action

at x = 40 should be proportional to the number of trials to convergence for a given run.

In the following, let St be the Q-value after t updates and SI be the initial Q-value. Using

Equation 1 and the fact that for the optimal action at the starting position, the reinforcement

received is K and the next state is the same as the current state, we can write,

St+1 = (1− β) St + β (K + γ St)
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= (1− β (1− γ)) St + β K

= ASt + C (2)

where A and B are constants defined to be equal to 1− β ∗ (1− γ) and β ∗K respectively.

Equation 2 is a difference equation which can be solved using S0 = SI to obtain

St = At+1 SI +
C (1− At+1)

1− A
.

If we define convergence by the criteria that |St+1 − St| < ε, where ε is an arbitrarily small

positive number, then the number of updates t required for convergence can be calculated

to be the following:

t ≥
log(ε)− log(SI (1− A)− C)

log(A)

=
log(ε)− log(β)− log(SI (1− γ)−K)

log(1− β (1− γ))
(3)

If we keep γ and SI constant the above expression can be shown to be a decreasing

function of β. This is corroborated by our experiments with varying β while holding γ = 0.1

(see Figure 2). As β increases, the agents take less number of trials to convergence to the

optimal set of actions required to follow the desired path. The other plot in Figure 2 presents

a comparison of the theoretical and experimental convergence trends. The first curve in the

plot represents the function corresponding to the number of updates required to reach steady

state value (with ε = 0). The second curve represents the average number of trials required

for a run to converge, scaled down by a constant factor of 0.06. The actual ratios between

the number of trials to convergence and the values of the expression on the right hand side

of the inequality 3 for β equal to 0.4, 0.6, and 0.8 are 24.1, 25.6, and 27.5 respectively (the

average number of trials are 95.6, 71.7, and 53; values of the above-mentioned expression

are 3.97, 2.8, and 1.93). Given the fact that results are averaged over 100 runs, we can

claim that our theoretical analysis provides a good estimate of the relative time required for

convergence as the learning rate is changed.

5.1.3 Varying agent capabilities

The next set of experiments was designed to demonstrate the effects of agent capabilities on

the time required to converge on the optimal set of actions. In the first of the current set of

17



0

2

4

6

8

10

0 20 40 60 80 100 120 140

Av
g. 

dis
tan

ce
 fr

om
 op

tim
al

Trials

Varying beta

0.8

0.6

0.4

0.8

0.6

0.4

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Beta

Variation of Steps to convergence with beta

(1-log(40*beta))/log(1-0.9*beta)
0.06 * trials to convergence

Figure 2: Variation of average distance of actual path from desired path over the course

of a run, and the number of updates for convergence of optimal Q-value with changing β
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experiments, one of the agents was chosen to be a “dummy”; it did not exert any force at

all. The other agent could only change the angle at which it could apply a constant force

on the block. In the second experiment, the latter agent was allowed to vary both force and

angle. In the third experiment, both agents were allowed to vary their force and angle. The

average number of trials to convergence for the first, second, and third experiment are 55,

431, and 115 respectively. The most interesting result from these experiments is that two

agents can learn to coordinate their actions and achieve the desired problem-solving behavior

much faster than when a single agent is acting alone. If, however, we simplify the problem

of the only active agent by restricting its choice to that of selecting the angle of force, it can
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learn to solve the problem quickly. If we fix the angle for the only active agent, and allow

it to vary only the magnitude of the force, the problem becomes either trivial (if the chosen

angle is identical to the angle of the desired path from the starting point) or unsolvable.

5.1.4 Transfer of learning

We designed a set of experiments to demonstrate how learning in one situation can help

learning to perform well in a similar situation. The problem with starting and goal locations

at (40,0) and (40,100) respectively is used as a reference problem. In addition, we used five

other problems with the same starting location and with goal locations at (50,100), (60,100),

(70,100), (80,100), and (90,100) respectively. The corresponding desired paths were obtained

by joining the starting and goal locations by straight lines. To demonstrate transfer of

learning, we first stored each of the policy matrices that the two agents converged on for the

original problem. Next, we ran a set of experiments using each of the new problems, with

the agents starting off with their previously stored policy matrices.

We found that there is a linear increase in the number of trials to convergence as the goal

in the new problem is placed farther apart from the goal in the initial problem. To determine

if this increase was due purely to the distance between the two desired paths, or due to the

difficulty in learning to follow certain paths, we ran experiments on the latter problems with

agents starting with uniform policies. These experiments reveal that the more the angle

between the desired path and the y-axis, the longer the agents take to converge. Learning

in the original problem, however, does help in solving these new problems, as evidenced

by a ≈ 10% savings in the number of trials to convergence when agents started with the

previously learned policy. Using a one-tailed t-test we found that all the differences were

significant at the 99% confidence level. This result demonstrates the transfer of learned

knowledge between similar problem-solving situations.

5.1.5 Complimentary learning

In the last few sections we have shown the effects of system parameters and agent capabilities

on the rate at which the agents converge on an optimal set of actions. In this section, we

discuss what an “optimal set of actions” means to different agents.

19



Figure 3: Optimal action choices for a selection of states for each agent according to their

policy matrices at the end of a successful run.

If the agents were cognizant of the actual constraints and goals of the problem, and knew

elementary physics, they could independently calculate the desired action for each of the

states that they may enter. The resulting policies would be identical. Our agents, however,

have no planning capacity and their knowledge is encoded in the policy matrix. Figure 3

provides a snapshot, at the end of a successfully converged run, of what each agent believes

to be its best action choice for each of the possible states in the world. The action choice

for each agent at a state is represented by a straight line at the appropriate angle and scaled

to represent the magnitude of force. We immediately notice that the individual policies

are complimentary rather than being identical. Given a state, the combination of the best

actions will bring the block closer to the desired path. In some cases, one of the agents even

pushes in the wrong direction while the other agent has to compensate with a larger force

to bring the block closer to the desired path. These cases occur in states which are at the

edge of the field of play, and have been visited only infrequently. Complementarity of the

individual policies, however, are visible for all the states.

5.2 Experiments in Non-Cooperative Domains

We designed a set of experiments in which two agents are provided different feedback for

the same block location. The agents are assigned to push the same block to two different
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Figure 4: Example trial when agents have conflicting goals.

goals along different paths. Hence, the action of each of them adversely affects the goal

achievement of the other agent. The maximum force (we refer to this as strength) of one

agent was chosen as 10 units, while the maximum force of the other agent was varied. The

other variable was the number of discrete action options available within the given force

range. When there is considerable disparity between the strengths of the two agents, the

stronger agent overpowers the weaker agent, and succeeds in pushing the block to its goal

location (see Figure 4). The average number of trials to convergence (see Table 2), however,

indicates that as the strength of the weaker agent is increased, the stronger agent finds it

increasingly difficult to attain its goal. For these experiments, the strong and the weak

agents had respectively 11 (between 0-10) and 2 (0 and its maximum strength) force options

to choose from.

When the number of force discretizations for the weak agent is increased from 2 to 10,

we find that the stronger agent finds it more difficult to push the block to its own goal. If we

increase the maximum force of the weak agent closer to the maximum force of the stronger

agent, we find that neither of them is able to push the block to its desired goal. At the of a

run, we find that the final converged path lies in between their individual desired paths. As

the strength of the weaker agent increases, this path moves away from the desired path of

the stronger agent, and ultimately lies midway between their individual desired paths when

both agents are equally strong.
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Intuitively, an agent should be able to ‘overpower’ another agent whenever it is stronger.

Why is this not happening? The answer lies in the stochastic variability of feedback received

for the same action at the same state, and the deterministic choice of the action corresponding

to the maximal policy matrix entry. When an agent chooses an action at a state it can receive

one of several different feedbacks depending on the action chosen by the other agent. We

define the optimal action choice for a state x to be the action Ax that has the highest average

feedback Fx. Suppose the first time the agent chooses this action at state x it receives a

feedback F1 < Fx. Also, let it receive a feedback F2 > F1 for a non-optimal action Ay

it chooses in the same state x. If these were the only two options available in state x,

the agent would choose Ay over Ax next time it is in state x, because the former action

corresponds to a higher policy matrix entry. If the steady state value of the policy matrix

entry for action Ay in state x is greater than the policy matrix entry for action Ax obtained

after receiving feedback F1, the latter action will be never tried again, and hence the agent

will converge on a non-optimal policy. This is a quintessential example of the exploration-

exploitation tradeoff [24]. Also, this is more likely to happen when the same action can

generate more number of distinct feedbacks (the same action for the stronger agent can

produce more distinct feedbacks when the discretizations for weaker agent is increased). A

simple remedy to this situation will be to choose a proportion of the actions randomly or to

choose actions using a probability distribution over the policy matrix values. Each of these

options, however, results in an exponential increase of the trials to convergence. Currently

we are developing a simulated annealing [28] based procedure which results in a decrease in

the proportion of random choices as the policy matrix converges to its steady state.

6 Robot navigation problem

We designed a problem in which four agents, A, B, C, and D, are to find the optimal path

in a grid world, from given starting locations to their respective goals, A′, B′,C ′, and D′.

The agents traverse their world using one of the five available operators: north, south, east,

west, or hold. Figure 5 depicts potential paths that each of the agents might choose during

their learning process. The goal of the agents is to learn moves that quickly take them to
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their respective goal locations without colliding with other agents.

A     B C    D

B’C’D’ A’

Figure 5: A robot navigation problem.

Each agent receives feedback based on its move: when it makes a move that takes them

towards their goal, they receive a feedback of 1; when it makes a move that takes them away

from their goal, they receive a feedback of -1; when it makes a move that results in no change

of their distance from their goal (hold), they receive a feedback of 0; when it makes a move

that results in a collision, the feedback is computed as depicted in Fig 6. All agents learn

at the same time by updating their individual policies.

X

Y

X

Y

X

 Y

feedback(X) = -10 feedback(X) = -5 feedback(X) = -5

Figure 6: Feedback for agent X when it causes different types of collisions (given the action

of the other agent in the collision).

The Robot navigation task is a domain in which the agent couplings varies over time.

When agents are located next to each other, they are very likely to interact and hence agent
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behaviors are tightly coupled. But, as they move apart, their interactions become less likely,

and as a result, their behaviors become loosely coupled.

Since the robot navigation problem produces rewards after each time step, we have used

the BBA method of payoff distribution with the classifier system. The system parameters

are β = 0.5, and γ = 0.8 for Q-learning and α = 0.1 for BBA.

Experimental results on the robot navigation domain comparing Q-learning and a clas-

sifier system using BBA for payoff distribution is displayed in Figure 10. Plots show the

average number of steps taken by the agents to reach their goals. Lower values of this pa-

rameter means agents are learning to find more direct paths to their goals without colliding

with each other. Results are averaged over 50 runs for both systems. Q-learning takes as

much as 5 times longer to converge when compared to BBA. The final number of steps taken

by agents using Q-learning is slightly smaller than the number of steps taken by agents using

BBA. We believe that if we make the convergence criteria more strict for the BBA, a better

solution can be evolved with more computational effort.

The interesting aspect of this experiment is that all the agents were learning simulta-

neously and hence it was not obvious that they would find good paths. Typical solutions,

however, show that agents stop at the right positions to let others pass through. This avoids

collisions. The paths do contain small detours, and hence are not optimal.

The performance of BBA when α=0.5 (comparable to β used in Q-learning) was not

very different when compared to that presented in Figure 10. It is interesting to note that

when experiments were tried setting the β in Q-learning to 0.1 (comparable to α in BBA)

the system did not attain convergence even after 5000 trials.

7 Resource sharing problem

The resource sharing problem assumes two agents sharing a common resource or channel,

with each of them trying to distribute their load on the system so as to achieve maximum

utility. In our version of the problem, it is assumed that one agent has already applied some

load distributed over a fixed time period, and the other agent is learning to distribute its

load on the system without any knowledge of the current distribution. A maximum load of
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Figure 7: Comparison of BBA and Q-learning on the robot navigation problem.

L can be applied on the system at any point in time (loads in excess of this do not receive

any utility).
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Figure 8: Curve depicting the utility received for a given load

The second agent can use K load-hours of the channel. If it applies a load of kt load-hours

on the system at time step t, when the first agent has applied lt load-hours, the utility it

receives is u(lt, kt) = U(max(L, kt + lt)) − U(max(L, lt), where U is the utility function in

Figure 8, and L = 10 is the maximum load allowed on the system. The total feedback it

gets at the end of T time steps is
∑T

t=1 u(lt, kt). This problem requires the second agent to

distribute its load around the loads imposed by the first agent in order to obtain maximum
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utility. The problem is that the second agent have no direct information about the load

distribution on the system. This is a typical situation in reinforcement learning problems

where the agent has to choose its actions based only on scalar feedback. This formulation

is different from other load balancing problems used in MAL literature [41] where more

short-term feedback is available to agents.

A single trial consists of an episode of applying loads until T time steps is completed

or until the agent has exhausted its load-hours, whichever occurs earlier. Thus, through

consecutive such trials the agent learns to distribute its load on the system in an optimal

fashion. Figure 9 presents the load distribution used by the first agent as well as one of

several optimal load distributions for the second agent in the particular problem we have

used for experiments (T = 10 in this problem).

The Resource sharing problem is another example of a tightly-coupled system with agent

actions interacting with each other at every time step. This domain can be considered to

be non-cooperative because agents are not doing a common task, each of the agents need to

coordinate with the others to achieve a utility that is most beneficial to itself.

Since the resource sharing problem produces rewards only after a series of actions are

performed we used the PSP method of payoff distribution with the classifier system. Though

BBA can also be used for payoff distribution in this problem, our initial experiments showed

that PSP performed much better than BBA on this problem. The parameter values are
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β = 0.85, γ = 0.9 for Q-learning and α = 0.1 for PSP.

In this set of experiments the fitness-proportionate PSP did not converge even after

150,000 trials. Experimental results comparing Q-learning and semi-random PSP, PSP(SR),

based classifier systems on the resource sharing problem is displayed in Figure 10. Results

are averaged over 50 runs of both systems. Though both methods find the optimal load

distribution in some of the runs, more often than not they settle for a less than optimal,

but reasonably good distribution. PSP takes about twice as long to converge but produces

a better load distribution on the average. The difference in performance is found to be

significant at the 99% confidence level using a two-sample t-procedure. We believe this

happens because all the active rules directly share the feedback at the end of a trial in PSP.

In Q-learning, however, the external feedback is passed back to policy elements used early

in a trial over successive trials. Interference with different action sequence sharing the same

policy element (state-action pair) can produce convergence to sub-optimal solutions.
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Figure 10: Comparison of PSP and Q-learning on the resource sharing problem.

Typical solutions produced by PSP and Q-learning differed in one important characteris-

tic. PSP solutions will save some of its load for the last empty time-slot, whereas Q-learning

solutions use up all the available load before that. Since PSP is able to utilize the last empty

time slot on the channel, it produces better utility than Q-learning.

The above results show two things: 1) an agent can effectively use a classifier system

to coordinate its actions effectively with no knowledge about the actions of the other agent
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using the common resource, 2) semi-random action choice mechanism can be a more effective

method for classifier systems than the commonly used fitness-proportionate action choice

scheme.

We ran a further set of experiments in this domain where both agents were learning con-

currently. In this mode, each agent would submit a load distribution to the system, and the

submitted load distributions will be used to give them feedback on their utilities. Neither of

the learning techniques was able to generate effective coordination between the agents. This

set of experiments, alone, glaringly exposes the limitations of individual learning. It seems

that in tightly coupled domains with delayed feedbacks it would be extremely unlikely that

good coordination will evolve between agents learning at the same time. This is particularly

true if there is one or very few optimal behavior pairings.

8 Conclusions and Future Research

In this paper we have addressed the problem of developing multiagent coordination strate-

gies with minimal domain knowledge and information sharing between agents. We have

compared classifier system based methods and Q-learning algorithms, two reinforcement

learning paradigms, to investigate a resource sharing and a robot navigation problem. Our

experiments show that the classifier based methods perform very competitively with the

Q-learning algorithm, and are able to generate good solutions to both problems. PSP works

well on the resource sharing problem, where an agent is trying to adapt to a fixed strategy

used by another agent, and when environmental feedback is received infrequently. Results

are particularly encouraging for the robot navigation domain, where all agents are learning

simultaneously. A classifier system with the BBA payoff distribution allows agents to coor-

dinate their movements with others without deviating significantly from the optimal path

from their start to goal locations.

Experiments conducted on the block-pushing task demonstrate that two agents can coor-

dinate to solve a problem better, even without developing a model of each other, than what

they can do alone. We have developed and experimentally verified theoretical predictions of

the effects of a particular system parameter, the learning rate, on system convergence. Other
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experiments show the utility of using knowledge, acquired from learning in one situation,

in other similar situations. Additionally, we have demonstrated that agents coordinate by

learning complimentary, rather than identical, problem-solving knowledge.

Using reinforcement learning schemes, we have shown that agents can learn to achieve

their goals in both cooperative and adversarial domains. Neither prior knowledge about

domain characteristics nor explicit models about capabilities of other agents are required.

This provides a novel paradigm for multi-agent systems through which both friends and foes

can concurrently acquire coordination knowledge.

A particular limitation of the proposed approach that we have identified is the inability

of individual, concurrent learning to develop effective coordination when agent actions are

strongly coupled, feedback is delayed, and there is one or a few optimal behavior combi-

nations. A possible partial fix to this problem would be to do some sort of staggered or

lock-step learning. In this mode of learning, each agent can learn for sometime, then execute

its current policy without modification for some time, then switch back to learning, etc. Two

agents can synchronize their behavior so that one is learning while the other is following a

fixed policy and vice versa. Even if perfect synchronization is not feasible, the staggered

learning mode is likely to be more effective than the concurrent learning mode we have used

in this paper.

A drawback of using reinforcement learning to generate coordination policies is that it

requires considerable amount of data, and as such can only be used in domains where agents

repeatedly perform similar tasks. Other learning algorithms with less data requirements can

possibly be explored to overcome this limitation.

This paper demonstrates that classifier systems can be used effectively to achieve near-

optimal solutions more quickly than Q-learning, as illustrated by the experiments conducted

in the robot navigation task. If we enforce a more rigid convergence criteria, classifier systems

achieve a better solution than Q-learning through a larger number of trials, as illustrated

by the results obtained on the resource sharing domain. We believe, however, that either

Q-learning or the classifier system can produce better results in a given domain. Identifying

the distinguishing features of domains which allow one of these schemes to perform better

will be a focus of our future research.
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We have also shown that a semi-random choice of actions can be much more productive

than the commonly used fitness-proportionate choice of actions with the PSP payoff distri-

bution mechanism. We plan to compare the BBA mechanism with these two methods of

payoff distribution.

We would also like to investigate the effects of problem complexity on the number of

trials taken for convergence. On the robot navigation domain, for example, we would like to

vary both the size of the grid as well as the number of agents moving on the grid to find out

the effects on solution quality and convergence time.

Other planned experiments include using world models within classifier systems [3] and

combining features of BBA and PSP [20] that would be useful for learning multiagent coor-

dination strategies.
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