
Learning to cooperate in multi-agent systems by combining Q-learning and

evolutionary strategy

Mary McGlohon and Sandip Sen
mary-mcglohon@utulsa.edu, sandip@utulsa.edu

Department of Computer Science
The University of Tulsa, Tulsa, Oklahoma

Abstract

Cooperative games can represent interactions between multiple
agents in many real-life situations. Thus single-stage coopera-
tive games provide a stylized, abstracted environment for test-
ing algorithms that allow artificial agents to learn to cooperate
in such settings. Individual reinforcement learners often fail to
learn coordinated behavior. Using an evolutionary approach to
strategy selection can produce optimal joint behavior but may
require significant computational effort. Our goal in this paper is
to improve convergence to optimal behavior with reduced com-
putational effort by combining learning and evolutionary tech-
niques. In particular, we show that by letting agents learn in
between generations in an evolutionary algorithm allows them
to more consistently learn effective cooperative behavior even
in difficult, stochastic environments. Our combined mechanism
is a novel improvisation involving selecting actual rather than
inherited behaviors.

1 Introduction

Reinforcement learning and evolutionary computation are
active topics in the area of autonomous agents due both
to their generic applicability and to the aesthetic appeal of
their similarities to biological systems. On the other hand,
coordination in games has applications in the behavioral
and social sciences. In this paper, we use instances of ma-
chine learning and adaptation techniques, Q-learning and
evolutionary strategy, to learn to solve cooperative games.

Many games are modeled as matrices representing dif-
ferent action choices available to players. In coordination
games, each agent receives the same payoff from a given ac-
tion combination. When the games are repeated, it is ben-
eficial for an agent to learn which of its own action choices
will produce the highest payoff, given the opponent’s policy.

Traditional, single-agent machine learning algorithms ap-
plied to cooperative systems are not guarateed to con-
verge to the optimal action combination. Without suffi-
cient exploration, an agent can get “stuck in a rut” and
choose nonoptimal actions because the payoff seems good

enough. Also, if the domain is nondeterministic, an agent
may get discouraged with infrequent, but significantly low
payoffs for an action, even when choosing that action is op-
timal [3, 5]. Therefore, using an algorithm with a proper
balance of exploration and exploitation is desirable.

In our work, we have designed a combined evolutionary
and reinforcement learning approach to solve some partic-
ular coordination games. A population of agents plays a
game for several iterations, and the most successful agents
pass phenotypic information on to the offspring. The off-
spring then improve on the parents’ policy through a rein-
forcement learning algorithm. This will often cause later
generations to converge to optimal behavior in the coordi-
nation game.

2 Related Work

2.1 Single-stage coordination games

Single-stage coordination games have been used as a model
for studying coordination in multi-agent systems [3, 5]. A
stage game consists of a set α of n agents, where each agent
i ∈ α has a set Ai of individual actions. The agents simula-
teously choose actions from their respective Ais each time
they play the stage game. A set of payoff matrices, Ri,
specify the payoff to each player for each possible action
combination. In coordination games payoff matrices are
identical; all players receive the same payoff for each action
combination. We use πi to denote the strategy profile for
agent i, where πi(a) is the probability of choosing action
a ∈ Ai by the agent i in repeated play of stage games.

∏
denotes the product of the individual strategies. If each πi

is deterministic, i.e., πi(a) = 1 for some a ∈ Ai, then
∏

is
a joint action [3, 5]. Multiagent learning schemes attempt
to converge to coordinated actions.

The single-stage coordination games used in this paper
include two deterministic games: the climbing game and
the penalty game [3]. The reward matrices for the players
for these two games are shown in Tables 1 and 2. These
games are interesting because the optimal action choice is

1

1a 1b 1c
2a 11 -30 0
2b -30 7 6
2c 0 0 5

Table 1: Payoff matrix for the climbing game.

1a 1b 1c
2a 10 0 k
2b 0 2 0
2c k 0 10

Table 2: Payoff matrix for the penalty game.

different from the safest action choice, the action with the
maximum worst-case payoff. For instance, in the climbing
game, the optimal action combination is “a,a”, but if one
of the two agents chooses “b” instead of “a,” both agents
are penalized heavily. Action “c” is the safest action: no
matter what the other agent chooses, the payoff is nonnega-
tive. Therefore, the action combination agents choose may
converge to “c,c” and result in a suboptimal payoff. If they
learn to cooperate, however, they may learn to choose the
optimal action and thus improve their payoffs. The penalty
matrix has a similar dilemma: action “b” is the safest op-
tion, but if “a,c” or “c,a” combinations are chosen, agents
are penalized by value k. To make the games more challeng-
ing, one can vary the climbing game to make it partially or
fully stochastic, as shown in Tables 3 and 4 [5]. This means
that the same action combination will return different pay-
offs with some static probability distribution.

2.2 Reinforcement learning

Reinforcement learning [4] is a general feedback-based
method for machine learning. It allows an agent to make
decisions and predictions for the optimal action without re-
quiring a teacher or supervisor to specify the best action
choice. Instead of taking advice, an agent receives rewards
or reinforcements as a result of its actions [10]. The re-
ward, typically a scalar value, represents the outcome of
an interaction between the agent and its environment [11].
The simplest agent, a memoryless reflex agent, learns to di-
rectly map states to actions. A utility-based agent learns the
utility function of states and uses it to decide actions. Fi-
nally, a Q-learning agent learns a policy function and uses
the function to map states to actions that will maximize
reward [10].

Q-learning, developed by Watkins [12], is the most fre-
quenty used reinforcement learning algorithm. An agent
estimates the utility for doing each of its actions, chooses
an action based on a selection function of the expected val-
ues, observes a reward, and then updates the Q-value or

1a 1b 1c
2a 11 -30 0
2b -30 14/0 6
2c 0 0 5

Table 3: Payoff matrix for the partially stochastic game.

1a 1b 1c
2a 10/12 5/-65 8/-8
2b 5/-65 14/0 12/0
2c 5/-5 5/-5 10/0

Table 4: Payoff matrix for the fully stochastic game.

the estimate of the utility of that action. The Q-update
function in stateless games is:

Q(a)← Q(a) + λ(r −Q(a)) (1)

where r is the reward received, and λ is the learning rate
(0 < λ < 1).

The action selection function is important as effective
learning requires sufficient exploration. Researchers often
use a Boltzmann distribution [3, 4, 5] for the probability of
choosing an action:

π(ai) =
e

EV (ai)
T

∑
ai′∈Ai

e
EV (ai′)

T

(2)

where EV is the expected value of an action (conventionally
the Q-value itself) and T is the temperature. Temperature
determines the likelihood for an agent to explore other ac-
tions: for high temperature, even when an expected value
of a given action is high, an agent may still choose an action
that appears less desirable. This exploration is especially
necessary in stochastic games, where payoffs received for
the same action combination may vary. For effective explo-
ration, a high temperature is used in the early stage games.
The temperature is decreased over time to favor more ex-
ploitation, as the agent is more likely to have discovered the
true estimates of different actions. The temperature as a
function of iterations is given by:

T (x) = (e−sx ∗ Tmax) + 1 (3)

where x is the iteration number, s is the rate of decay and
Tmax is the starting temperature,

Claus and Boutilier present two different forms of multia-
gent reinforcement learning. Independent learners act blind
to other agents in play; only the individual action ai, not
the joint action, is taken into account when updating action
utility estimates upon receiving the reward. Joint action
learners (JALs), on the other hand, consider the actions

of the other agents in the system. Whereas independent
learners only keep track of Q-values for each Ai in the ac-
tion space, joint action learners keep a Q-table that includes
separate entries for each set of possible joint actions, giving
the Q-table |A|n entries, where |A| denotes the number of
possible actions, and n is the number of learners.

The JAL algorithm takes the probability of a joint ac-
tion being taken and factors it into the Q-value. Given an
experience 〈ai, o, r〉, where ai is the action taken by agent
i and o the observation resulting from the action, there are
different possible joint actions a that support the situation.
Thus, the Q-update function is:

Q(a)← Q(a) + λPr(a|o, ai)(r −Q(a)) (4)

where Pr(a|o, ai) is the probability that action a and out-
come o both occur (the joint action experience observation),
given an action ai.

Claus and Boutilier showed that JALs will converge faster
than ILs will. This is similar to fictitious play, in which
agents play best response to the observed opponent [8].
When agents explicitly reason about other agents, as in
JAL, it can facilitate convergence in coordinated games [2].
However, JALs are inefficient in more complicated games
with more agents, as the joint action space increases ex-
ponentially with increasing n. Therefore, it is helpful to
find a learning algortihm for ILs that converges to de-
sireable outcomes for such games. It is necessary to con-
sider that Q-learning for ILs guarantees convergence only in
single-agent settings [3]; when it does converge it will often
converge to sub-optimal behavior. To confront this prob-
lem, Kapetanakis and Kudenko explored different reinforce-
ment learning heuristics in the deterministic and stochas-
tic games– some heuristics performed better on determin-
istic games than did straightforward Q-learning; however,
a solution was not found for the fully stochastic game at
that time [5]. In more recent work, they found a solution
to the fully stochastic domain, by using commitment se-
quences [6]. Such commitment sequences, however, require
pre-play “locker-room agreements,” which may not always
be feasible.

Another way to teach cooperation in a multi-agent sys-
tem is to use a joint policy table [7]. In it, agents in a system
each contribute to the Q-table. The drawback of this sys-
tem is that it introduces an element of common knowledge,
and in some way defeats the purpose of a multiagent sys-
tem; instead of having individual decision processes, the
agents are to some extent different parts to one controlling
superagent [8].

2.3 Evolutionary computation and genetic
algorithms

A genetic algorithm, first developed by John Holland, is a
method of optimizing a function, based on the theory of evo-

lution [13]. An agent in a genetic algorithm contains a ge-
netic code, where genes contain data that influence how an
agent performs during its lifetime. After a given “lifetime,”
the population goes through a selection process where all
agents are evaluated according to an evaluation function,
and then the best are “selected” to reproduce, whether
through direct cloning or crossover, where each agent in the
next generation contains a mixture of the genes of multiple
agents in the previous generation. Mutation adds to the re-
production of agents a random element. Very infrequently,
instead of a parent’s gene, a random gene is inserted into
the offspring [13].

Ackley and Littman showed that reinforcement learn-
ing combined with a genetic algorithm, an approach which
they dubbed evolutionary reinforcement learning (ERL)
performed better than either strategy alone, in an artifi-
cial life world, a digital ecosystem [1]. They explained the
Baldwin effect, with which learned behaviors of agents in
a genetic algorithm become part of the genetic code, and
agents are born with an instinct to perform certain actions.

3 PAES and PAES-Q

We now present our Parental Advisory Evolutionary Strat-
egy (PAES) system, a modification of the classical genetic
algorithm. The population in PAES consists of structures
where each structure represents a policy for an agent, where
a policy π is a probabilistic distribution over the actions
available to an agent. For instance, π = {0.4, 0.3, 0.3} indi-
cates an agent has a 40 percent chance of choosing action
“a”, and a 30 percent chance each for choosing “b” or “c.”
For evaluation, agents are paired at random from the pop-
ulation and are evaluated by repeatedly playing the game
where agent actions are chosen based on their corresponding
policies.

Each agent keeps track of the frequency of its actions
chosen. Then, agents are chosen to reproduce, based on a
fitness function. The probability P of an agent being chosen
to reproduce is

P (i) =
TotalReward(i)∑

i′∈α TotalReward(i′)
(5)

There is no crossover in our model. Instead, the par-
ent’s frequency of actions becomes the child’s probability of
choosing an action:

πparent(a) =
freqparent(a)∑

a′ ∈ Aifreqparent(a′)
(6)

While agents are selected for reproduction proportional
to their performance, the offspring policy follows not the
policy of the parent, but the actual action frequencies that
were sampled from those policies. This copy process re-
wards or selects actual behavior followed, which can differ

Figure 1: Q-learning: The climbing (top left), penalty (top right), partially stochastic (bottom left), and fully stochastic (bottom right) games, averaged
over 10 runs.

(due to sampling effects) from the genetic prescription in
the parent policies. Such propagation of actual behavior
rather than exact genetic blueprint differs from the copying
of the genetic material used in traditional evolutionary tech-
niques. It also supports phenomena similar to the Baldwin
effect.

For mutation, one may choose an agent in a generation
of a population and re-initialize it to a random probabilis-
tic distribution of actions rather than having it inherit a
policy from its parent. The rate for this occurrence– the
experimental mutation rate– was set at 0.01.

We developed a PAES-Q learner by incorporating Q-
learning into this evolutionary algorithm. The algorithm
consisted of the same population size of 200, with a 10 per-
cent selection rate, 200 generations, and 1000 games per
generation. Instead of agents blindly accepting “parental
advice” as the probability of choosing an action, PAES-Q
learners can use Q-learning to improve on the behavior in-
herited from parents. The Q-table setup is as described
above, but the action selection algorithm is modified as fol-
lows:

πchild(a) =
πparent(a) ∗ e

EV (a)
T

∑
a′∈Ai

πparent(a′) ∗ e
EV (a)

T

(7)

4 Experimental Results

In this paper we consider concurrent learning by two agents,
i.e., n = 2. The Q-update function used was that in Equa-
tion 1, with λ = 0.9, Tmax = 500, and s = 0.06. We bound
the lower limit of temperature to be 1 to ensure baseline
residual exploration, an set at 0.06 and 500 in the exper-
iments of Kapetanakis and Kudenko, but can be adjusted
according to the number of iterations in the experiment [5].

4.1 Results from the climbing and penalty
games

We used the games described above to test the algorithms
to compare the convergence of classical Q-learning, PAES,
and a combination of the two, PAES-Q.

The baseline evolutionary algorithm set up was a popula-
tion of 200 agents over 200 generations. In one generation,
each agent played a single-stage game 1000 times with an-
other agent in the population. In each game, an agent uses
a static probability distribution for choosing actions. The
starting population was initiated with random probabilities.

Our results verified previous research that simple Q-
learning will converge to nonoptimal choices in all four of
the games presented. Repeating this procedure without
passing on “parental advice” will inevitably fall short of
the optimal action. Results of classical Q-learning in our ex-
periments, which coincide with results of Kapetanakis and

Figure 2: PAES vs. PAES with Q-learning: The climbing (top left), penalty (top right), partially stochastic (bottom left), and fully stochastic (bottom
right) games, averaged over 10 runs.

Kudenko[5], are shown in Figure 1. Notice that, in the
climbing game, the agents are converging to an action with
reward of 7, which is the action combination “b,b”. The
optimal action combination, “a,a” has a reward of 11. The
penalty game does indeed converge to the optimal action,
where k = 0. (Repeated experiments showed that when
the penalty is increased, convergence to optimal actions be-
comes less and less frequent– as action combinations “a,c”
and “c,a” return more negative rewards, agents will more
commonly converge to action combination “b,b”. Again, in
stochastic domains, action choice converges to suboptimal
average reward.

Similarly, using baseline PAES assured that the agents
in the population would converge to optimal outcome after
enough generations, but only in the penalty game. In the
climbing game, and the stochastic variations thereof, PAES
agents fare even worse than Q-learners. However, when the
agents in the population also incorporated Q-learning in the
action decision process, the population adapted to choose
the optimal action (and did so more quickly than PAES in
the case of the penalty game). Comparisons between PAES
and PAES-Q are shown in Figure 2.

4.2 Results from the diagonal game

To further test PAES-Q, we used a diagonally-optimal ma-
trix. It differs from the others in that all actions are equally
beneficial: regardless of the action pair chosen, payoff is 1
if the agents’ actions are identical and 0 otherwise.

1a 1b 1c
2a 1 0 0
2b 0 1 0
2c 0 0 1

Table 5: Payoff matrix for the diagonal game.

Results for this matrix were surprising: despite the mul-
tiple options for agents, the population still converged to
cooperation. Even though the initial population was ran-
domly distributed across the actions, the fitness function
could detect which agents were performing well. Through
the generations, agents that were cooperating with the
“popular” action were selected, and the “popular” action
choice was passed on to the next generation. PAES-Q
converged much more quickly than did PAES alone. In
multiple runs, the agents converged to different “popular”
actions. Figure 3 compares the performance of PAES to

that of PAES-Q. Obviously, since the first generation was
not optimal, Q-learning would not have converged by itself.
Figure 4 is an example of the distribution of action choices
over generations in one run: it shows how action “a”, in
this case, pulls out over the others.

Figure 3: PAES vs. PAES with Q-learning: Diagonal game

Figure 4: Distribution of actions in PAES-Q over generations: Diagonal
game.

5 Future Work

Problems arose when PAES was applied to a game with
payoff matrix as shown in Table 6 where optimal joint ac-
tion involves non-identical choices. When both players had
the same optimal action, the method worked, but if one
player’s highest-paying action was “a” only when another
chose “b”, or if choosing “b” was optimal only when the
opponent chose “c”, the agents were unable to converge to
an optimal policy. Agents would choose “b” or “c” in the
final generation, but would not always produce “b,c” ac-
tion combinations. In these games, it might be necessary
to use cooperative evolution techniques, with two popula-
tions: one for Player 1 and one for Player 2. Such work is

described in [9]. We plan to incoporate PAES-Q into such
a cooperative coevolution framework to solve matrices with
nonidentical action choices as the optimal action combina-
tion.

1a 1b 1c
2a 10 20 0
2b 20 5 20
2c 0 20 10

Table 6: Payoff matrix for the nonidentical-choice game.

6 Conclusions

Evolutionary strategies using the process of natural selec-
tion can be used to learn optimal action combinations in
repeated cooperative games. We devised an PAES, an evo-
lutionary strategy where offspring adapt parental behavior.
The computation involved in an evolving population is sig-
nificantly greater than that of Q-learning alone. However,
Q-learning is not guaranteed to converge to optimal be-
havior in such multiagent learning scenarios. We proposed
PAES-Q, where offspring used Q-learning to improve on be-
haviors inherited through genetic operators from parents.
In many cases, combining Q-learning with PAES causes
better results than either strategy used alone. Self-play,
however, does not suffice in mixed-strategy games where
agents need to follow distinct policies.

Acknowledgments: This work has been supported in
part by an NSF award IIS-0209208.

References

[1] David H. Ackley and Michael L. Littman. Interactions be-
tween Learning and Evolution, pages 487–509. Addison,
1992.

[2] E. Alonso, M. D’Iverno, D. Kudenko, M. Luck, and J. No-
ble. Learning in agents and multi-agent systems. Knowledge
Engineering Review, 16:277–284, 2001.

[3] Caroline Claus and Craig Boutilier. The dynamics of re-
inforcement learning in cooperative multiagent systems. In
Proceedings of the fifteenth national/tenth conference on Ar-
tificial intelligence/Innovative applications of artificial in-
telligence, pages 746–752. American Association for Artifi-
cial Intelligence, 1998.

[4] L.P. Kaelbling, M.L. Littman, and Andrew Moore. Rein-
forcement learning: A survey. Journal of Artificial Intelli-
gence Research, 4:237–285, 1996.

[5] Spiros Kapetanakis and Daniel Kudenko. Reinforcement
learning of coordination in cooperative multi-agent systems.
In AAAI/IAAI 2002, pages 326–331, 2002.

[6] Spiros Kapetanakis and Daniel Kudenko. Reinforcement
learning to coordinate using commitment sequences in co-
operative multi-agent systems. In AAMAS03, 2003.

[7] Liviu Panait and Sean Luke. Cooperative multi-agent learn-
ing: The state of the art. Technical Report GMU-CS-TR-
2003-1, Department of Computer Science, George Mason
University, 4400 University Drive MS 4A5, Fairfax, VA
22030-4444 USA, 2003.

[8] David C. Parkes and Lyle H. Ungar. Learning and adaption
in multiagent systems,. In AAAI-97, July 30, 1997.

[9] Narendra Puppala, Sandip Sen, and Maria Gordin. Shared
memory based cooperative coevolution. In Proceedings of
the 1998 IEEE World Congress on Computational Intelli-
gence, pages 570–574, Anchorage, Alaska, USA, 5-9 May
1998. IEEE Press.

[10] Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd
edition edition, 2003.

[11] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning : An Introduction. MIT press, Cambridge,MA,
1998.

[12] C. J. Watkins. Learning from delayed rewards. PhD thesis,
Cambridge university, 1989.

[13] Darrell Whitley. An overview of evolutionary algorithms:
practical issues and common pitfalls. Information and Soft-
ware Technology, 43(14):817–831, 2001.

