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ABSTRACT

Multiagent learning literature has looked at iterated two-
player games to develop mechanisms that allow agents to
learn to converge on Nash Equilibrium strategy profiles.
Such equilibrium configuration implies that there is no mo-
tivation for one player to change its strategy if the other
does not. Often, in general sum games, a higher payoff can
be obtained by both players if one chooses not to respond
optimally to the other player. By developing mutual trust,
agents can avoid iterated best responses that will lead to a
lesser payoff Nash Equilibrium. In this paper we consider
1-level agents (modelers) who select actions based on ex-
pected utility considering probability distributions over the
actions of the opponent(s). We show that in certain situa-
tions, such stochastically-greedy agents can perform better
(by developing mutually trusting behavior) than those that
explicitly attempt to converge to Nash Equilibrium.

1. INTRODUCTION

The reinforcement learning techniques with performance and
convergence guarantees have been developed for isolated sin-
gle agents. The underlying assumption of such a proof is
that the environment is stationary. Multi-agent or concur-
rent learning, however, violates this assumption. As a re-
sult, the standard reinforcement learning techniques (like Q-
learning) are not guaranteed to converge in a multi-agent en-
vironment. The desired convergence in multiagent systems
is on an equilibrium strategy-profile (collection of strategies
of the agents) rather than optimal strategies for an individ-
ual agent.

The stochastic-game (or Markov Games) framework, a gen-
eralization of Markov Decision Processes for multiple play-
ers, has been used to model learning by agents in various
domains [4, 3, 2]. In [2], two basic types of multiagent learn-
ers have been studied. The learners who do not model other
agents, effectively considering them as passive parts of a
non-stationary environment, are called ‘independent learn-
ers’ (ILs). We term these 0-level agents. In contrast to
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such agents, those that observe others’ actions and rewards
and use these explicitly in modeling them, are called ’joint-
action learners’ (JALs). We call these 1-level agents. Theo-
rem 1 in [2] claims that both 0 and 1-level agents converge
to equilibria in purely cooperative domains (coordination
games). But their work is not extendible to general domains
(general-sum games). The authors in [3] have adopted a
complete-information general-sum game approach and pro-
vide a learning scheme that allows learners to converge to a
mixed-strategy Nash Equilibrium in the limit.

Nash Equilibrium, however, does not guarantee that agents
will obtain the best possible payoffs. Some non-Nash Equlib-
rium action combinations may yield better payoffs for both
agents, which may be reached if the agents look ahead while
selecting actions [1]. Such desirable non-myopic choices are
preferred by both agents. While playing best response to
other agents’ current policy will lead to a deviation from
such desirable solutions, restraint or mutual trust can en-
able players to stick to such action combinations.

In this paper we evaluate the possibility of concurrent learn-
ers converging to such desirable non-myopic action choices.
While Hu and Wellman’s approach is guaranteed to converge
to Nash Equilibrium strategy profiles [3], independent, or
even ordinary 1-level Q-learners have no such guarantees. In
our previous work, we have observed that 0-level Q-learners
often outperformed higher-level Q-learners in the long run
even though their learning rate is slower [6]. In this paper
we show that greedy modelers can, in their turn, outper-
form equilibrium seeking modelers in terms of the rewards
received.

2. DEFINITIONS

In this section, we introduce some definitions to formulate
a framework for concurrent learning.

DerINITION 1. A Markov Decision Process (MDP) is a
quadruple {S, A, T, R}, where S is the set of states, A is the
set of actions, T is the transition function, T : S x A —
PD(S), PD being a probability distribution, and R is the
reward function, R: S x A — R.

A multiagent reinforcement-learning task can be looked upon
as an extended MDP, with S specifying the joint-state of the
agents, A being the joint-actions of the agents, (A1 x Az X
... A, where A; is the set of actions avaiable to the ith



agent), T as the joint state-transition function, and the re-
ward function is redefined as R : Sx A — R"™. The functions
T and R are usually unknown, necessitating learning. The
goal of the ith agent is to find a strategy m; that maximizes
its expected sum of discounted rewards,

(s, m) =Y 4 E(rimi,m i 50 = s)

t=0

where sg is the initial joint-state, r{ is the reward of the ith
agent at time ¢, v € [0,1) is the discount factor, and 7_;
is the strategy-profile of i’s opponents. In [3] the ith agent
learns m_; simultaneously, and opts for the best response to
it. Though myopically this is the best an agent can do, it
may miss opportunities for receiving higher payoffs as in the
well-known Prisoner’s Dilemma problem [9].

DEFINITION 2. A bimatriz game is given by a pair of ma-
trices, (M1, M2), (each of size |A1] x |Az2|) for a two-agent
game, where the payoff of the ith agent for the joint ac-
tion (a1,az2) is given by the entry Mi(ai,az2), V(ai,a2) €
Ay ><1427 = 1,2

Each stage of an extended-MDP for two agents (it can be
extended to n agents using n-dimensional tables instead of
matrices), can be looked upon as a bimatrix game. A zero-
sum game is a special bimatrix game where M (a1,a2) +
Ms(ai,a2) = 0, Y(ai,a2) € Ar x As. In this paper we
consider general-sum games, where the above sum is not
a constant, and hence the individual payoffs of the agents
for any joint-action are uncorrelated. We now define Nash
equilibrium for such games.

DEFINITION 3. A pure-strategy Nash Equilibrium for o
bimatriz game (M1, M2) is a pair of actions (ai,a3) such
that

Mi(ay,a3) > Mi(a,a;3) VYai € A

M>(ai,a3) > Ma(aj,az2) Vaz € Az

In a Nash equlibrium the action chosen by each player is
the best response to the opponent’s current strategy and no
player in this game has any incentive for unilateral deviation
from its current strategy. A general-sum bimatrix game may
not have any pure-strategy Nash Equilibrium.

DEFINITION 4. A mized-strategy Nash Equilibrium for a

bimatriz game (M1, M2) is a pair of probability vectors (71, 75)

such that
' Mymy > i Myws ¥m € PD(A;)

7wy Maws > 7y’ Mame Ve € PD(Asz)

where PD(A;) is the set of probability-distributions over the
action space of the ith agent.

A significant property of mixed-strategy Nash Equilibria, is
that there always exists at least one such equilibrium profile

for an arbitrary finite bimatrix game [7]. Given such a bima-
trix game (M1, M>), the mixed-strategy Nash Equilibrium,
(w1, 73 ), can be computed using a quadratic programming
approach as outlined in [5].

3. Q-LEARNING

A general, single-agent reinforcement learning task is an
MDP, where the state transition and reward functions T and
R are unknown. A simple, model-free and on-line technique
for reinforcement learning is Q-learning [11]. In a stateless
domain, as is the case with single-stage games studied in
this paper, an independent Q-learner will have Q-values for
each action a, @(a), and update them based on rewards r
received from taking action a as follows:

Q(a) « Q(a) + a(r — Q(a))

where « is the learning-rate. This iteration has been proved
to converge to optimal Q-values, for a particular structure
of «, but independent of any particular exploration strat-
egy provided it satisfies some general requirements. When
a number of independent learners apply this algorithm, the

convergence-guarantee does not hold due to the non-stationarity

of the environment. However, such straightforward applica-
tions of Q-learning in multiagent systems have achieved suc-
cess in the past [2, 8, 10, 12]. Our 1-level Q-learners learn
Q-values, Q(a,b), for each possible joint-action (a,b), using
its observation of the actions of the other agents, but solely
its own reward for joint-action. Thus the updation-rule used
is

Q(a,b) < Q(a,b) + ar — Q(a,b))

To allow these 1-level Q-learning agents to increasingly ex-
ploit their learned strategies, we use the Boltzmann explo-
ration strategy, which slowly increases the exploitation prob-
ability. In this exploration scheme, the action a is selected
with probability

oE(Q@)/T
S eP@@N/T

where E(Q(a)) = >, psQ(a,b), py being computed as the
relative-frequency measure from B’s action history. Thus we
call these agents “expected utility based probabilistic learn-
ers” or (EUPs). The temperature parameter T is started at
a high value (causing more exploration) and then decreased
over time, e.g., by muliplying with a decay factor, to increase
the exploitation probability.

4. EXPERIMENTS

We experiment with 3 x 3 game matrices. Each agent has
three actions to choose from, where a;s are the actions of
agent A and b;s those of agent B. In figures 1, 2, 3 and 4
we present four such matrices. For any action combination,
the top-right value in the corresponding matrix cell is the
payoff to agent B and the bottom-left value is the payoff
to agent A. The shaded entry in each matrix corresponds
to the Nash Equilibrium strategy-profile. The action-profile
that the agents prefer (greedy) and the desirable non-myopic
solutions are also marked in each game-matrix.

In figure 1(left) there is a single pure Nash Equilibrium given
by the action-profile (as,bs) giving a payoff of 5 to both
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agents. The desirable solution, however, is for the action-
combination (ai,b1) giving a payoff of 10 to both agents.
We used two EUPs using the above Q-learning algorithm,
learning for 10,000 iterations and using 0.999942 as the tem-
perature decay factor starting at 7' = 1. The probabilities
of adopting joint-actions (a1,b1) and (as,bs) as measured
by frequencies were recorded every 500 interactions aver-
aged over the last 500 interactions.
eraged over 10 runs, and these probabilities are plotted in
figure 1(right). In this case, the EUPs converge to the Nash
Equilibrium in most of the runs even though the payoff is less
than the desirable payoff. This is because the payoff matrix
is constructed such that asz is the best response (actually in
this example, a3 and b3 are also the agents’ dominant strate-
gies) of agent A irrespective of B’s choice and b3 is the best
response of agent B irrespective of A’s choice. However, in
one run, the desirable action combination was selected by
the learners.

The figures were av-

We then reduced A’s payoff for (as,b1) and B’s payoff for
(a1,b3) to 9 so that both (as, bs) and {(a1,b1) are pure Nash
Equilibria (figure 2(left)). However, (a1, b1) is the desirable
solution. The corresponding probability plots are reported
in figure 2(right). Here too the EUPs converge to the unde-
sirable Nash Equilibrium and for the same reasons as listed
above. The quadratic programming approach [3] produced
a mixed strategy (probability distribution) of [0,0,1] and
[0,0,1] for the agents A and B respectively. This corre-
sponds to selecting the (as3,bs) action combination. Thus,
our EUPs learn almost the same strategy as the mixed-
strategy learners seeking Nash Equilibrium.

For the probability plot in figure 3 (right), the matrix on
left has both {a1,b1) and (as,bs) as pure Nash Equilibria.
The EUPs learn to adopt the desirable action combination
(a1,b1) in most runs. We then modified the matrix by in-
creasing B’s payoff from (a1,bs) to 11 (figure 4 (left)), thus
leaving (as,bs) as the only pure Nash Equilibrium in this
matrix. From figure 4 (right) we can see that the EUPs still
succeed in selecting the desirable solution more often than

joint-action (a1,b1) alone.

played, agent B has the incentive to change its

10000

Figure 1: Game matrix where a3 and b3 are individually preferable to the agents, also only (as,bs) is the
Nash Equilibrium (left). The probability plots for the joint actions (ai,b:1) (solid) and (a3, bs) are shown on

(as, b)), even though it is not the Nash Equilibrium solution.

The profile learned by 1-level mixed strategy agent for the
matrix in figure 4 (left) is [0.09, 0, 0.91] and [0.09, 0, 0.91] for
A and B respectively. This gives an expected reward of 5.45
to each of the mixed-strategy equilibrium learners, whereas
our EUPs receive expected reward of 6.3 for selection of the

The question of mutual trust can be highlighted in the ma-
trix in figure 4 (left). If a combination of (a1,b1) is being

action from

b1 to b3 to increase its payoff from 10 to 11. When it makes
such a change, A’s optimal response would be to change
from a1 to as to increase its payoff from 4 to 5.
in their haste to respond optimally to the current situation,
both agents converge to an equilibrium which pays them half

Thus,

of what they could have got if they had showed restraint.
Each of our EUPs; on the other hand, trusts the other’s

tion stochastically based on that distribution.

tual benefit.

5. FUTURE WORK

where stochastic modeling agents can converge

probability-distribution over the actions and selects its ac-

Thus they

progressively tend towards the mutually beneficial part of
their search space, emulating restraint which leads to mu-

Our basic result is that there are certain game-structures,

to high pay-

off points which will be missed by sophisticated modeling
learners that are designed to produce Nash Equilibrium [3].

We do not tout our empirical results as an argument for

always using EUPs.

necessary to do so.

However, our observation clearly demonstrates that learn-
ing to select a Nash Equilibrium is not necessarily the best
an agent can do, and that agents who are not bound by
such criteria can sometimes do better. In future, we plan to
study the theoretical basis for selection of a non-equilibrium
solution and identify the nature and extent of mutual trust
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Figure 2: Game matrix where a3 and b; are relatively preferable to the agents while both (a1,b1) and (a3, bs)
are the Nash Equilibria (left). The probabilitry plots for the joint actions (a1,b1) (solid) and (as,b3) are shown

on the right.

We also believe that joint learners can be augmented with
a greedy lookahead policy [1] rather than the best response
policy (which corresponds to an immediate greedy policy)
to improve their likelihood of selecting non-myopic equilib-
rium solutions. We plan on investigating such algorithms
for discounted rewards.
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Figure 3: Game matrix where a1 and b; are relatively preferable to the agents while both (as3,b3) and (a1,b:1)
are the Nash Equilibria (left). The probabilitry plots for the joint actions (a1,b1) (solid) and (as,bs) are shown
on the right.
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Figure 4: Game matrix where a1 and b, are relatively preferable to the agents but only (as,bs) is the Nash
Equilibrium (left). The probabilitry plots for the joint actions (ai,b1) (solid) and (a3, bs) are shown on the
right.



