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ABSTRACTMultiagent learning literature has looked at iterated two-player games to develop me
hanisms that allow agents tolearn to 
onverge on Nash Equilibrium strategy pro�les.Su
h equilibrium 
on�guration implies that there is no mo-tivation for one player to 
hange its strategy if the otherdoes not. Often, in general sum games, a higher payo� 
anbe obtained by both players if one 
hooses not to respondoptimally to the other player. By developing mutual trust,agents 
an avoid iterated best responses that will lead to alesser payo� Nash Equilibrium. In this paper we 
onsider1-level agents (modelers) who sele
t a
tions based on ex-pe
ted utility 
onsidering probability distributions over thea
tions of the opponent(s). We show that in 
ertain situa-tions, su
h sto
hasti
ally-greedy agents 
an perform better(by developing mutually trusting behavior) than those thatexpli
itly attempt to 
onverge to Nash Equilibrium.
1. INTRODUCTIONThe reinfor
ement learning te
hniques with performan
e and
onvergen
e guarantees have been developed for isolated sin-gle agents. The underlying assumption of su
h a proof isthat the environment is stationary. Multi-agent or 
on
ur-rent learning, however, violates this assumption. As a re-sult, the standard reinfor
ement learning te
hniques (like Q-learning) are not guaranteed to 
onverge in a multi-agent en-vironment. The desired 
onvergen
e in multiagent systemsis on an equilibrium strategy-pro�le (
olle
tion of strategiesof the agents) rather than optimal strategies for an individ-ual agent.The sto
hasti
-game (or Markov Games) framework, a gen-eralization of Markov De
ision Pro
esses for multiple play-ers, has been used to model learning by agents in variousdomains [4, 3, 2℄. In [2℄, two basi
 types of multiagent learn-ers have been studied. The learners who do not model otheragents, e�e
tively 
onsidering them as passive parts of anon-stationary environment, are 
alled `independent learn-ers' (ILs). We term these 0-level agents. In 
ontrast to

su
h agents, those that observe others' a
tions and rewardsand use these expli
itly in modeling them, are 
alled 'joint-a
tion learners' (JALs). We 
all these 1-level agents. Theo-rem 1 in [2℄ 
laims that both 0 and 1-level agents 
onvergeto equilibria in purely 
ooperative domains (
oordinationgames). But their work is not extendible to general domains(general-sum games). The authors in [3℄ have adopted a
omplete-information general-sum game approa
h and pro-vide a learning s
heme that allows learners to 
onverge to amixed-strategy Nash Equilibrium in the limit.Nash Equilibrium, however, does not guarantee that agentswill obtain the best possible payo�s. Some non-Nash Equlib-rium a
tion 
ombinations may yield better payo�s for bothagents, whi
h may be rea
hed if the agents look ahead whilesele
ting a
tions [1℄. Su
h desirable non-myopi
 
hoi
es arepreferred by both agents. While playing best response toother agents' 
urrent poli
y will lead to a deviation fromsu
h desirable solutions, restraint or mutual trust 
an en-able players to sti
k to su
h a
tion 
ombinations.In this paper we evaluate the possibility of 
on
urrent learn-ers 
onverging to su
h desirable non-myopi
 a
tion 
hoi
es.While Hu andWellman's approa
h is guaranteed to 
onvergeto Nash Equilibrium strategy pro�les [3℄, independent, oreven ordinary 1-level Q-learners have no su
h guarantees. Inour previous work, we have observed that 0-level Q-learnersoften outperformed higher-level Q-learners in the long runeven though their learning rate is slower [6℄. In this paperwe show that greedy modelers 
an, in their turn, outper-form equilibrium seeking modelers in terms of the rewardsre
eived.
2. DEFINITIONSIn this se
tion, we introdu
e some de�nitions to formulatea framework for 
on
urrent learning.Definition 1. A Markov De
ision Pro
ess (MDP) is aquadruple fS;A; T;Rg, where S is the set of states, A is theset of a
tions, T is the transition fun
tion, T : S � A !PD(S), PD being a probability distribution, and R is thereward fun
tion, R : S �A!R.Amultiagent reinfor
ement-learning task 
an be looked uponas an extended MDP, with S spe
ifying the joint-state of theagents, A being the joint-a
tions of the agents, (A1 �A2 �: : : An where Ai is the set of a
tions avaiable to the ith



agent), T as the joint state-transition fun
tion, and the re-ward fun
tion is rede�ned as R : S�A!Rn. The fun
tionsT and R are usually unknown, ne
essitating learning. Thegoal of the ith agent is to �nd a strategy �i that maximizesits expe
ted sum of dis
ounted rewards,v(s; �i) = 1Xt=0 
tE(ritj�i; ��i; s0 = s)where s0 is the initial joint-state, rit is the reward of the ithagent at time t, 
 2 [0; 1) is the dis
ount fa
tor, and ��iis the strategy-pro�le of i's opponents. In [3℄ the ith agentlearns ��i simultaneously, and opts for the best response toit. Though myopi
ally this is the best an agent 
an do, itmay miss opportunities for re
eiving higher payo�s as in thewell-known Prisoner's Dilemma problem [9℄.Definition 2. A bimatrix game is given by a pair of ma-tri
es, (M1;M2), (ea
h of size jA1j � jA2j) for a two-agentgame, where the payo� of the ith agent for the joint a
-tion (a1; a2) is given by the entry Mi(a1; a2); 8(a1; a2) 2A1 �A2; i = 1; 2.Ea
h stage of an extended-MDP for two agents (it 
an beextended to n agents using n-dimensional tables instead ofmatri
es), 
an be looked upon as a bimatrix game. A zero-sum game is a spe
ial bimatrix game where M1(a1; a2) +M2(a1; a2) = 0; 8(a1; a2) 2 A1 � A2. In this paper we
onsider general-sum games, where the above sum is nota 
onstant, and hen
e the individual payo�s of the agentsfor any joint-a
tion are un
orrelated. We now de�ne Nashequilibrium for su
h games.Definition 3. A pure-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of a
tions (a�1; a�2) su
hthat M1(a�1; a�2) �M1(a1; a�2) 8a1 2 A1M2(a�1; a�2) �M2(a�1; a2) 8a2 2 A2In a Nash equlibrium the a
tion 
hosen by ea
h player isthe best response to the opponent's 
urrent strategy and noplayer in this game has any in
entive for unilateral deviationfrom its 
urrent strategy. A general-sum bimatrix game maynot have any pure-strategy Nash Equilibrium.Definition 4. A mixed-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of probability ve
tors (��1 ; ��2)su
h that ��1 0M1��2 � �01M1��2 8�1 2 PD(A1)��1 0M2��2 � ��1 0M2�2 8�2 2 PD(A2)where PD(Ai) is the set of probability-distributions over thea
tion spa
e of the ith agent.A signi�
ant property of mixed-strategy Nash Equilibria, isthat there always exists at least one su
h equilibrium pro�le

for an arbitrary �nite bimatrix game [7℄. Given su
h a bima-trix game (M1;M2), the mixed-strategy Nash Equilibrium,(��1 ; ��2), 
an be 
omputed using a quadrati
 programmingapproa
h as outlined in [5℄.
3. Q-LEARNINGA general, single-agent reinfor
ement learning task is anMDP, where the state transition and reward fun
tions T andR are unknown. A simple, model-free and on-line te
hniquefor reinfor
ement learning is Q-learning [11℄. In a statelessdomain, as is the 
ase with single-stage games studied inthis paper, an independent Q-learner will have Q-values forea
h a
tion a, Q(a), and update them based on rewards rre
eived from taking a
tion a as follows:Q(a) Q(a) + �(r �Q(a))where � is the learning-rate. This iteration has been provedto 
onverge to optimal Q-values, for a parti
ular stru
tureof �, but independent of any parti
ular exploration strat-egy provided it satis�es some general requirements. Whena number of independent learners apply this algorithm, the
onvergen
e-guarantee does not hold due to the non-stationarityof the environment. However, su
h straightforward appli
a-tions of Q-learning in multiagent systems have a
hieved su
-
ess in the past [2, 8, 10, 12℄. Our 1-level Q-learners learnQ-values, Q(a; b), for ea
h possible joint-a
tion (a; b), usingits observation of the a
tions of the other agents, but solelyits own reward for joint-a
tion. Thus the updation-rule usedis Q(a; b) Q(a; b) + �(r �Q(a; b))To allow these 1-level Q-learning agents to in
reasingly ex-ploit their learned strategies, we use the Boltzmann explo-ration strategy, whi
h slowly in
reases the exploitation prob-ability. In this exploration s
heme, the a
tion a is sele
tedwith probability eE(Q(a))=TPa0 eE(Q(a0))=T :where E(Q(a)) = Pb pbQ(a; b), pb being 
omputed as therelative-frequen
y measure from B's a
tion history. Thus we
all these agents \expe
ted utility based probabilisti
 learn-ers" or (EUPs). The temperature parameter T is started ata high value (
ausing more exploration) and then de
reasedover time, e.g., by muliplying with a de
ay fa
tor, to in
reasethe exploitation probability.
4. EXPERIMENTSWe experiment with 3 � 3 game matri
es. Ea
h agent hasthree a
tions to 
hoose from, where ais are the a
tions ofagent A and bis those of agent B. In �gures 1, 2, 3 and 4we present four su
h matri
es. For any a
tion 
ombination,the top-right value in the 
orresponding matrix 
ell is thepayo� to agent B and the bottom-left value is the payo�to agent A. The shaded entry in ea
h matrix 
orrespondsto the Nash Equilibrium strategy-pro�le. The a
tion-pro�lethat the agents prefer (greedy) and the desirable non-myopi
solutions are also marked in ea
h game-matrix.In �gure 1(left) there is a single pure Nash Equilibrium givenby the a
tion-pro�le ha3; b3i giving a payo� of 5 to both
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Figure 1: Game matrix where a3 and b3 are individually preferable to the agents, also only ha3; b3i is theNash Equilibrium (left). The probability plots for the joint a
tions ha1; b1i (solid) and ha3; b3i are shown onthe right.agents. The desirable solution, however, is for the a
tion-
ombination ha1; b1i giving a payo� of 10 to both agents.We used two EUPs using the above Q-learning algorithm,learning for 10,000 iterations and using 0.999942 as the tem-perature de
ay fa
tor starting at T = 1. The probabilitiesof adopting joint-a
tions ha1; b1i and ha3; b3i as measuredby frequen
ies were re
orded every 500 intera
tions aver-aged over the last 500 intera
tions. The �gures were av-eraged over 10 runs, and these probabilities are plotted in�gure 1(right). In this 
ase, the EUPs 
onverge to the NashEquilibrium in most of the runs even though the payo� is lessthan the desirable payo�. This is be
ause the payo� matrixis 
onstru
ted su
h that a3 is the best response (a
tually inthis example, a3 and b3 are also the agents' dominant strate-gies) of agent A irrespe
tive of B's 
hoi
e and b3 is the bestresponse of agent B irrespe
tive of A's 
hoi
e. However, inone run, the desirable a
tion 
ombination was sele
ted bythe learners.We then redu
ed A's payo� for ha3; b1i and B's payo� forha1; b3i to 9 so that both ha3; b3i and ha1; b1i are pure NashEquilibria (�gure 2(left)). However, ha1; b1i is the desirablesolution. The 
orresponding probability plots are reportedin �gure 2(right). Here too the EUPs 
onverge to the unde-sirable Nash Equilibrium and for the same reasons as listedabove. The quadrati
 programming approa
h [3℄ produ
eda mixed strategy (probability distribution) of [0; 0; 1℄ and[0; 0; 1℄ for the agents A and B respe
tively. This 
orre-sponds to sele
ting the ha3; b3i a
tion 
ombination. Thus,our EUPs learn almost the same strategy as the mixed-strategy learners seeking Nash Equilibrium.For the probability plot in �gure 3 (right), the matrix onleft has both ha1; b1i and ha3; b3i as pure Nash Equilibria.The EUPs learn to adopt the desirable a
tion 
ombinationha1; b1i in most runs. We then modi�ed the matrix by in-
reasing B's payo� from ha1; b3i to 11 (�gure 4 (left)), thusleaving ha3; b3i as the only pure Nash Equilibrium in thismatrix. From �gure 4 (right) we 
an see that the EUPs stillsu

eed in sele
ting the desirable solution more often than

ha3; b3i, even though it is not the Nash Equilibrium solution.The pro�le learned by 1-level mixed strategy agent for thematrix in �gure 4 (left) is [0:09; 0; 0:91℄ and [0:09; 0; 0:91℄ forA and B respe
tively. This gives an expe
ted reward of 5.45to ea
h of the mixed-strategy equilibrium learners, whereasour EUPs re
eive expe
ted reward of 6.3 for sele
tion of thejoint-a
tion ha1; b1i alone.The question of mutual trust 
an be highlighted in the ma-trix in �gure 4 (left). If a 
ombination of ha1; b1i is beingplayed, agent B has the in
entive to 
hange its a
tion fromb1 to b3 to in
rease its payo� from 10 to 11. When it makessu
h a 
hange, A's optimal response would be to 
hangefrom a1 to a3 to in
rease its payo� from 4 to 5. Thus,in their haste to respond optimally to the 
urrent situation,both agents 
onverge to an equilibrium whi
h pays them halfof what they 
ould have got if they had showed restraint.Ea
h of our EUPs, on the other hand, trusts the other'sprobability-distribution over the a
tions and sele
ts its a
-tion sto
hasti
ally based on that distribution. Thus theyprogressively tend towards the mutually bene�
ial part oftheir sear
h spa
e, emulating restraint whi
h leads to mu-tual bene�t.
5. FUTURE WORKOur basi
 result is that there are 
ertain game-stru
tures,where sto
hasti
 modeling agents 
an 
onverge to high pay-o� points whi
h will be missed by sophisti
ated modelinglearners that are designed to produ
e Nash Equilibrium [3℄.We do not tout our empiri
al results as an argument foralways using EUPs.However, our observation 
learly demonstrates that learn-ing to sele
t a Nash Equilibrium is not ne
essarily the bestan agent 
an do, and that agents who are not bound bysu
h 
riteria 
an sometimes do better. In future, we plan tostudy the theoreti
al basis for sele
tion of a non-equilibriumsolution and identify the nature and extent of mutual trustne
essary to do so.
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Figure 2: Game matrix where a3 and b3 are relatively preferable to the agents while both ha1; b1i and ha3; b3iare the Nash Equilibria (left). The probabilitry plots for the joint a
tions ha1; b1i (solid) and ha3; b3i are shownon the right.We also believe that joint learners 
an be augmented witha greedy lookahead poli
y [1℄ rather than the best responsepoli
y (whi
h 
orresponds to an immediate greedy poli
y)to improve their likelihood of sele
ting non-myopi
 equilib-rium solutions. We plan on investigating su
h algorithmsfor dis
ounted rewards.
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Figure 3: Game matrix where a1 and b1 are relatively preferable to the agents while both ha3; b3i and ha1; b1iare the Nash Equilibria (left). The probabilitry plots for the joint a
tions ha1; b1i (solid) and ha3; b3i are shownon the right.
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Figure 4: Game matrix where a1 and b1 are relatively preferable to the agents but only ha3; b3i is the NashEquilibrium (left). The probabilitry plots for the joint a
tions ha1; b1i (solid) and ha3; b3i are shown on theright.


