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Aggressive Pricing to
Exploit Market Niches
in Supply Chains
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E -markets’ growing popularity has given business-to-business trading an unprece-

dented boost. In supply chains connecting enterprises that trade services and

goods,1 an organization’s success depends on its ability to maintain stable and profitable

relationships with other supply chain participants. To stay ahead of the competition,

organizations must deploy increasingly complex
trading strategies.

Globalization has made supply chains enormously
complex to maneuver. Geographically distributed
suppliers, retailers, and manufacturers can be diffi-
cult to integrate into an efficient supply chain man-
agement system, and today’s supply chain managers
must move materials from geographically distributed
suppliers to global manufacturing facilities. Decision
support tools that accurately model supply chain
dynamics can help managers achieve these goals.2

Here we evaluate how predictive scheduling strate-
gies and aggressive pricing schemes can help suppli-
ers exploit market niches in B2B supply chains.

Efficient supply chain management seeks to

• Reduce waste by minimizing duplication and in-
efficient production

• Reduce inventory costs by efficiently planning
future demand

• Reduce lead time by optimally allocating subtasks
• Improve product quality
• Develop strong, long-term partnerships
• Increase profitability

Multiagent systems researchers have modeled a
supply chain as a decentralized network of software
agents (see the “Related Work in Supply Chain Man-
agement” sidebar for more information). Structured
conversations achieve effective coordination among
agents in a supply chain.3 A business entity’s depend-
ability determines the stability of its relationships. A
manufacturing enterprise’s net productivity, for exam-
ple, depends on the performance of its supply chain’s

downstream components, which in turn depends on
the supplier entities’ performance index. Manufac-
turers’ tasks differ in priority and deadline, and dif-
ferent priorities represent market demand dynamics. 

We consider here a three-level supply chain of pri-
mary and secondary manufacturers and suppliers: Pri-
mary manufacturers reside in the upper level, and the
second level contains secondary manufacturers linked
with suppliers that reside in the lowest level. At each
level is a group of competitive agents, and agent func-
tionalities differ in each layer. We use a contracting
framework to connect suppliers to manufacturers:4

1. Manufacturers announce contracts for tasks
with given specifications (deadline and pro-
cessing time). 

2. Suppliers bid on these tasks with prices.
3. An auction allocates the contract to the supplier

that fulfills all task constraints and offers the
lowest price.

Competitive scheduling helps agents improve
profitability by creating market niches.4 Suppliers
able to accommodate dynamically arriving tasks
increase their profit. Here, we investigate how dif-
ferent pricing mechanisms affect suppliers’ prof-
itability under varying conditions, including task mix
and group composition. A supplier that meets dead-
lines few others can handle will be able to demand
more for its services. When competition is high, a
supplier reduces its price to win the contract.

Our mechanism is especially suited for supply
chain environments where many tasks are being con-
tracted in an open environment based primarily on

Robust, opportunistic

scheduling strategies

can significantly

improve suppliers’

competitiveness by

identifying market

opportunities and

strategically

positioning and

pricing available

resources to 

exploit them.



price quotes. In particular, this means that
tasks aren’t contracted on the basis of long-
term relationships between parties. We also
assume a steady distribution of task types that
lets suppliers form flexible schedules for
accommodating highly profitable tasks. For this
strategy to create market niches effectively, suf-
ficient opportunities must exist for high-prior-
ity tasks to be contracted on short notice. Such
short-notice contracting can occur in domains
where schedules have to be quickly readjusted
because suppliers fail to meet their deadlines
or have machine or personnel problems.

Pricing strategies
Suppliers can use adaptive pricing schemes

to exploit market opportunities. A supplier
might benefit by hiking prices when it sees less
competition for contracts and lowering them
as competition increases. But if it doesn’t have
current information about competitors, such

schemes could backfire. Although a supplier
might benefit by aggressively exploiting
sleeping market opportunities in the short
term, it should take a more conservative
approach in the face of competition.

We’ve defined three supplier pricing
strategies. In all three, the supplier increases
the bid price when it’s winning contracts con-
tinuously. But a supplier can’t bid more than
the secondary manufacturer’s reserve price.
Suppose a supplier s gets invited to bid for a
task t by a secondary manufacturer m, whose
reservation price is Rm. The task length is l(t),
and the deadline dl(t) determines priority
P(t). We assume that a task with an immedi-
ate deadline is considered high priority (pri-
ority 1) and a task with a normal deadline is
of ordinary priority (priority 0).

In a linear strategy, if the supplier won a
previous contract for this type of task t, it will
increase its bid by a constant � from its pre-

vious bid, provided the new bid won’t exceed
the reserve price of the secondary manufac-
turer it’s bidding to. Here, for a fair compar-
ison, we’ve used the same � for all suppliers.
Similarly, if the supplier loses its previous
contract for a similar task, it will reduce its
bid by � from its previous bid, provided the
bid isn’t less than its own reserve price Rs. So,
if the supplier bid b for the previous contract
of the same length and priority as that of task
t, then for task t it will bid

(1)

A defensive strategy uses a more cautious
calculation to increase (or decrease) the sup-
plier’s previous bid when it’s winning (or los-
ing) contracts. If the supplier won k contracts

bid
b Rm=

+( )min ,

ma

α if it won last contract

xx ,b Rs−( )




 α if it lost last contract
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The problem of supply chain management has recently drawn
the attention of multiagent systems (MAS) researchers. In MAS,
a supply chain is conceptualized as a group of collaborative
autonomous software agents.1 It’s argued that managers can
better coordinate and schedule processes by distributing the
organization-wide business management system to autonomous
problem-solving agents. This approach works better for geo-
graphically distributed organizations that can't manually con-
trol trading. Christopher Beck and Mark Fox have investigated
supply chain coordination using partial constraint satisfaction
by mediating agents.2 Ye Chen and colleagues have proposed
negotiation-based supply chain management, where the nego-
tiating software agents establish a virtual supply chain when an
order arrives.3 MASCOT uses the blackboard architecture, a prov-
en methodology for integrating multiple knowledge sources for
problem solving, to implement a mixed-initiative agent-based
architecture for supply chain planning and scheduling.4

Jayashankar Swaminathan and colleagues proposed a frame-
work for efficient supply-chain formation.5 Olivier Labarthe
and colleagues presented a heterogeneous agent-based simu-
lation to model supply chains.6 MAS research has emphasized
the emergence of the optimal supply chain configuration.
William Walsh and colleagues demonstrated optimal dynamic
task allocation in a supply chain using combinatorial auction.7

Given a task composed of a group of subtasks, they showed
the dynamic formation of the supply chain that produces max-
imum profit.

In 2003, the Trading Agent Competition (www.sics.se/tac)
introduced the TAC SCM game to simulate the challenges of
supporting dynamic supply chain practices. In this framework,
which uses stochastic task generation, customers require com-
puters with varying configurations. The agents bid for cust-
omers' contracts and also contract with different suppliers for
raw materials. An agent manufactures the computers in its
own factory when it has the required raw materials and then

delivers the order to the customer. The agent's challenge is to
design efficient strategies for factory scheduling, contracting
with suppliers, competitive and profitable bidding to custo-
mers, inventory cost reduction, and reducing penalties for
late delivery or order cancellation.
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in a row for similar tasks, it will increase its
bid by

provided the increased bid won’t exceed the
secondary manufacturer’s reserve price.
Here, � is another constant parameter. This
supplier will decrease its bid by the same
amount—that is, incr—from its previous bid
if it loses k contracts in a row for similar
tasks, provided the decreased bid isn’t less
than its own reserve price. If the supplier’s
last bid for the same task type was b, we find
the new bid from Equation 1 using � –  (k � �)
instead of �.

A supplier following an impatient strat-
egy increases or decreases its bid sharply
after winning or losing contracts, respec-
tively. If the supplier won k contracts in a row
for similar tasks, it increases its bid from the
previous bid by � + (k � �), provided the new
bid doesn’t exceed the secondary manufac-
turer’s reserve price. Similarly, if the supplier
loses k contracts in a row, it decreases its bid
by � + (k � �), provided it won’t be less than
its own reserve price. If its last bid was b, we
find the new bid from Equation 1 using 
� + (k � �) instead of �.

We assume that, at the simulation’s out-
set, each supplier has the same bid for a par-
ticular task type.

Scheduling strategies
Suppliers can use pricing schemes to

exploit market niches if the arriving task mix
presents such opportunities and if suppliers
can create a flexible local schedule to accom-
modate profitable tasks. Smart, predictive
scheduling and bidding decisions are key fac-
tors to producing market niche opportunities.
Here we evaluate four scheduling strategies
for suppliers. The goal is to allocate a task t
of length l(t) and deadline dl(t), but each
strategy has distinct motivations:

• The first-fit strategy searches forward from
the current time and assigns t to the first
empty interval of length l(t) on the calen-
dar. This produces a compact, front-loaded
schedule.

• The best-fit strategy searches the entire
feasible part of the schedule (between the
current time and deadline dl(t)) and as-
signs t to an interval with minimal empty
slots around it. This strategy produces
clumped schedules, but the clumps need

not be at the front of the schedule.
• The worst-fit strategy searches the entire

feasible part of the schedule (between the
current time and deadline dl(t)) and as-
signs t to an interval with maximum empty
slots around it. This produces an evenly
loaded schedule.

• Agents using the expected utility-based
(EU) strategy, described in the next section,
use knowledge of periodic patterns in the
task arrival distribution to decide whether
to bid on a new task. The first three strate-
gies listed schedule tasks “greedily”—they
bid for a task whenever they can schedule
it. But a supplier might want to refrain from
bidding, keeping the option open to bid for
a more profitable task later. If the task
arrival pattern isn’t known a priori, the

agent can learn it provided the pattern
doesn’t change drastically in a short time.
Such opportunistic scheduling carries the
risk that some production slots remain
unused if the expected high-profit tasks
never materialize. An agent using this algo-
rithm bids for a task if its expected utility is
positive. The task has a negative EU, and the
agent won’t bid on it if the agent’s expecta-
tion that it can make more profit later over-
powers the risk of not bidding now.

Utility of task scheduling
For each arriving task t ��, where � is

the set of all tasks, the utility for the task-
scheduling agent is given by the function
u(l(t), P(t)), where l(t) is the task’s length
and P(t) is its priority. Let esd(t) and dl(t) be
the earliest start date and the deadline for pro-
cessing the task, respectively. An agent cal-
culates the number of empty slots, fs(d), for
each day d �D, where D is the set of all days
on calendar C between and including est(t)

and dl(t). For each of these days, the agent
generates two sets of task combinations,
T kfs(d) and T k

fs(d)–l(t), where 

is the set of all task combinations in which
the length of the tasks in each combination
adds up to � and each task has a priority
higher than k. We compare the utility of
scheduling this task now and scheduling the
remaining slots later with all possible ways
of scheduling the currently empty slots. We
choose to schedule the task now if the corre-
sponding utility dominates all other ways of
filling up the empty slots without scheduling
the current task.

Let nT
i,j be the number of tasks in T of

length i and priority j. Pr (i, nT
i,j, d, H) is the

probability that at least nT
i,j number of tasks

of length i and priority j will arrive later on
day d, where H is the history of tasks that have
already arrived. Given the task distribution,
we calculate the probabilities Pr (i, nT

i,j, d, H)
using the multinomial cumulative probabil-
ity function.

The expected utility of scheduling the cur-
rent task t on day d on calendar C given the
history of task arrivals H is

EU (t, d, H, C ) = u(l(t), P(t)) + den(C, est(t)) 
� (AU(t, d, H, fs(d) – l(t))

– AU(t, d, H, fs(d))),

where

is the average expected utility of scheduling
h hours on day d with tasks of higher prior-
ity than task t given the history of task arrivals
H. lmax is a task’s maximum possible length,
and the function den returns the calendar’s
density (the percentage of scheduled slots)
up to a given date (to facilitate scheduling,
we use den(C, 0) = 1).

For a given calendar day, the EU expres-
sion adds the sum of the current task’s util-
ity to the difference of the average utility of
all possible ways to fill the calendar with
higher-priority tasks with or without the
current task being scheduled. We schedule
the task if it’s positive for at least one of the
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days considered and the day chosen pro-
vides the maximum expected utility—that
is, arg maxd�DEU(t, d, H, C). 

Experimental framework
We designed our simulations to evaluate

the different pricing schemes’ relative effec-
tiveness under varying environmental con-
ditions. In particular, we expect to identify
when smart scheduling strategies produce
market niches that let suppliers use aggres-
sive pricing to exploit such opportunities.

In our simulations, each period consists
of a five-day work week, each day having
six slots. We vary the arrival rate of different
task types and vary the percentage of prior-
ity tasks over different simulations. Each
task is generated and allocated to a manu-
facturer depending on whether the manu-
facturer can accomplish the task using one of
its suppliers. A manufacturer selects one
supplier over another using a first-price
sealed-bid auction protocol.

We used a three-level supply chain for our
simulations (see Figure 1), each level being
populated by one or more enterprises having
similar functional capabilities. There is one
main manufacturer in level one, six sec-
ondary manufacturers in level two, and 12
suppliers at level three. We assume a whole
task T to be a combination of parts—that is,
T = Lm + Lsm + Lsu, where Lm, Lsm, and Lsu are
the main manufacturer’s, secondary manu-
facturers’, and suppliers’ tasks, respectively.
The main manufacturer contracts part of each
task it must complete to a secondary manu-
facturer, which in turn contracts part of each
task it wins to a supplier in some subset of
all suppliers. We call this subset the sec-
ondary manufacturer’s supplier window. Our
experiments use enough secondary manu-
facturers and suppliers that each supplier can
receive contracts from exactly two different
secondary manufacturers.

A task assigned to the main manufacturer
has two properties:

• Priority has a value of either 0 (ordinary)
or 1 (high). High-priority tasks have a
one-day deadline, and low-priority tasks
have a one-week deadline.

• Length refers to how many time units
(slots) the task requires for completion.

A task must be scheduled in consecutive
slots on the same day. Higher-priority tasks
are more profitable.

In our simulation, tasks are generated sto-
chastically, and we vary the task distribution
to verify the different algorithms’robustness.
In one scenario, most tasks arrive early in
the week, primarily low-priority with a dead-
line of one week, with fewer high-
priority, short-deadline tasks generated later
in the week (see Table 1). Another task dis-
tribution type generates tasks of different
lengths and arrival dates with equal proba-
bility. Table 1 presents the probability of gen-
erating high-priority and low-priority tasks
of varying length on each day of the week.

Suppliers can use one of the three pricing
strategies and one of the four scheduling
algorithms described earlier. Our simulation
doesn’t permit preemptive scheduling, which
would preclude using leveled commitment
protocols.5 So, a supplier can’t undo its com-
mitment to a contract to serve another con-
tract. All suppliers use the same initial bid
price: this value equals the task’s length for
an ordinary task and is twice the task’s length
for a high-priority task. Subsequently, on the
basis of their win/loss record for past con-
tracts, suppliers adjust their bids using one
of the price adjustment schemes discussed
earlier. Suppliers can bid for that task only if
their current schedules can accommodate a
task announced by a secondary manufacturer
and they are within that manufacturer’s sup-
plier window. The supplier with the mini-
mum bid price wins the contract. When a
supplier wins a bid, it increases its wealth by
an amount equal to its bid price. Initially, all
suppliers have zero wealth.

Experimental results
We also investigated the effectiveness of

different pricing strategies. To describe our
results, we represent first-fit, best-fit, worst-
fit, and expected utility-based scheduling
algorithms using FF, BF, WF, and EU,
respectively. We refer to suppliers’ different
pricing strategies—linear, defensive, and
impatient—as LIN, DEF, and IMPT, respec-
tively. If a supplier uses scheduling strategy
X and pricing strategy Y, we call that supplier
X_Y. For example, we refer to a supplier
using the EU scheduling algorithm and the
LIN pricing strategy as EU_LIN.

The first experiment evaluates the linear
pricing strategy’s relative merits in exploiting
market niches created by the different sched-
uling strategies. We use 12 suppliers, three
each of FF_LIN, BF_LIN, WF_LIN, and
EU_LIN, and generate 200 tasks per week.
Figure 2 shows the average wealth these
strategies generate on different days of the
week. We assume that after one agent is
assigned a task, it will complete it success-
fully, so it generates the wealth whenever the
task is assigned. Initially, FF, BF, and WF sup-
pliers generate more wealth by winning more
contracts, while the EU strategy passes over
some of these tasks. On the fourth and fifth
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Figure 1. The supply chain structure used
in the market simulations.

Table 1. Probabilities of generating tasks.

Monday Tuesday Wednesday Thursday Friday

Task length High Low High Low High Low High Low High Low
(days) priority priority priority priority priority priority priority priority priority priority

1 .001 .14 .005 .005 .002 .010 .03 .01 .04 .01

2 .001 .14 .005 .005 .002 .010 .03 .01 .04 .01

3 .001 .15 .005 .005 .001 .005 .02 .02 .03 .01

4 .001 .15 .005 .005 .001 .005 .02 .02 .03 .01
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days, EU accommodates more tasks, espe-
cially higher-priority ones, thus accumulating
more wealth than the other supplier types. In
Figure 2, we see that responsive scheduling
lets EU suppliers create a market niche and
win profitable contracts with less competition. 

To follow up on this observation, we inves-
tigated whether the EU suppliers could fur-
ther exploit the new market niche using a more
aggressive pricing scheme. The second exper-
iment, therefore, replaces three EU_LIN sup-
pliers with three EU_IMPT suppliers but oth-
erwise resembles the first one. Figure 3 shows
the average wealth these different agents gen-
erated. As before, EU-based scheduling cre-
ates the market niche and accommodates the
high-priority tasks in the last two days of the
week. More importantly, EU_IMPT creates
more wealth compared to EU_LIN in the last
experiment. As suppliers win more contracts
in the last two days, they further increase their
bids to more aggressively exploit the market
niche in the absence of competition.

To evaluate less aggressive pricing schemes
in this context, the third experiment replaces
the EU_IMPT suppliers with three EU_DEF
suppliers, keeping the rest of the population
unchanged. We find that EU suppliers still
generate more wealth than those using other
scheduling strategies, but the defensive or cau-
tious pricing strategy extracts less wealth than
the EU_IMPT agents do given the same mar-
ket niche (see Figure 4). 

So, the EU suppliers generate maximum
wealth using impatient pricing, because this
strategy takes full advantage of the opportu-
nity to bid very high when little or no com-
petition exists—that is, few agents can meet
the scheduling requirements for the high-
priority tasks generated in the last two days
of the week. Therefore, if the scheduling
strategy distribution is somewhat even and
high-priority tasks come in bursts with immi-
nent deadlines, aggressive pricing schemes
similar to the impatient strategy used here
can significantly increase wealth for predic-
tive schedulers.

Next, we evaluate whether the impatient
pricing strategy would benefit suppliers
using the FF, BF, and WF scheduling strate-
gies as well. Figure 5 compares the results of
two experiments, both with 12 suppliers,
three for each scheduling algorithm. In one,
FF, BF, and WF suppliers follow the IMPT
pricing strategy and EU suppliers use LIN
pricing. In the other, all suppliers use LIN
pricing. We find that FF, BF, and WF suppli-
ers perform better when they use IMPT pric-
ing. With uniform scheduling strategy dis-
tributions, then, all suppliers can benefit from
aggressive pricing as market niches of dif-
fering size and wealth are produced for all
scheduling strategies.

Next, we evaluate the pricing schemes’rel-
ative performance when all suppliers use the
EU scheduling strategy. We again use 12 sup-

pliers, four each using LIN, IMPT, and DEF
pricing strategies, and reduce the tasks to 100
per week. Figure 6 shows that the IMPT sup-
plier perform best, followed by LIN and then
DEF. The impatient strategy performs well
here for somewhat opposite reasons than in
the previous experiments. Because all sup-
pliers are opting for similar high-priority
jobs, competition is high and more suppliers
fail to win contracts. IMPT suppliers lower
their bids sharply and win more auctions by
underbidding suppliers with other pricing
strategies. So, aggressive pricing can domi-
nate even when all suppliers use the same
scheduling strategy.

Is aggressive pricing preferable when every-
one uses it? We ran three experiments, in each
case keeping only suppliers following the EU
scheduling strategy. So, we ran three experi-
ments with 12 suppliers using EU_LIN,
EU_DEF, or EU_IMPT schemes, respec-
tively. Figure 7 shows that in this case suppli-
ers with defensive pricing generate maximum
wealth while suppliers with impatient pricing
perform the worst. Without clear market
niches, impatient suppliers get into a down-
ward spiral of price wars, significantly erod-
ing everyone’s profitability. Defensive agents
reduce their bids less aggressively when they
lose contracts, and this more patient attitude
rakes in more profit in the long run. In essence
this is the opposite scenario of more wealth
generated by aggressive pricing in the pres-
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ence of market niches. So, whereas aggres-
sive pricing generates more wealth when mar-
ket niches exist, less aggressive pricing mech-
anisms produce more profits when they don’t.

Our approach offers a novel combina-
tion of opportunistic scheduling and

aggressive pricing to improve suppliers’prof-
itability in supply chains in the context of
B2B trading. To build on this work, we plan
to develop an analytical model to predict and
choose the best scheduling and pricing strat-
egy combination, whether given or having
formed expectations of competing agents’
strategy choices and task arrival distributions.
We also plan to augment this work by adap-
tively selecting the scheduling strategy from
observed job mixes.

To better represent real-life supply chains,
our model should incorporate the concept of
decommitment and penalty in the contracting
process. We plan to investigate the effect of
trust in this context. We also plan to study
resource swapping based on side payments,
which would let effective coalitions develop
to better respond to uncertain market needs.
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scheduling and different pricing strategies.
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Figure 7. Average wealth earned by 
different suppliers using EU scheduling
and different pricing mechanisms when
they are the only type of supplier in the
population.
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