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Abstract

When an agent learns in a multiagent environment, the patyoéceives is dependent on
the behavior of the other agents. If the other agents areladsaing, its reward distribution
becomes non-stationary. This makes learning in multiaggstems more difficult than single-
agent learning. Prior attempts at value-function baseahieg in such domains have used off-
policy Q-learning that do not scale well as the cornerstevith restricted success. We study
on-policy modifications of such algorithms, with the proenisf scalability and efficiency. In
particular we prove that these hybrid techniques are gteeaito converge to their desired fixed
points under some restrictions. We also show experimgntakt the new techniques can learn
(from self-play) better policies than the previous aldamis (also in self-play) during some phases

of the exploration.



1 Introduction

The reinforcement learning (RL) paradigm provides techegjusing which an individual agent can
optimize its environmental payoff. However, the presenta mon-stationary environment, cen-
tral to multi-agent learning (MAL), violates the assumpsounderlying convergence proofs of sin-
gle agent RL techniques. As a result, standard reinforcéneamnning technigues like Q-learning
[Watkins1989] are not guaranteed to converge in a multhagavironment. The focus of con-
vergence for multiple, concurrent learners is on an equilib strategy-profile rather than optimal
strategies for the individual agents.

The stochastic-game (or Markov Gaméamework, a generalization of Markov Decision Pro-
cesses for multiple controllers, has been used to modehifgaiby agents in purely competitive
domains [Littman1994, Sandholm and Crites1996, Hu andriéilLl 998, Bowling and Veloso2002].
In [Littman1994] the author has presented a minimax-Q legralgorithm and evaluated its per-
formance experimentally. Hu and Wellman (1998) (along \iittiher research in [Bowling2000,
Littman2001]) extended Littman’s framework to enable tigeras to converge to a mixed-strategy
Nash equilibrium in general-sum games. The Q-learningrélgn, being a model-free and on-
line learning technique, is particularly suited for mudtage games, and as such, an attractive can-
didate for multiagent-learning in uncertain environmentdowever, one major problem with Q-
learning is scalability. The table based representationgs intractable in large problems. In multi-
agent environments in particular, this is even more prooedrsince the state-action space grows
exponentially in the number of agents. At the same time, driag with function approxima-
tion has been shown to diverge [Baird1995], whilersA(0), an on-policy version of Q-learning
[Rummery1994, Sutton and Barto1998], with function appration has been demonstrated to con-

verge to a bounded region at worst [Gordon2000]. ConsetyenksA(0) looks attractive for hybri-



dising with previous Q-learning based MAL algorithms. listpaper we preserdarsA(0) versions
of concurrent Q-learning for competitive as well as genstah domains, and prove that they can
converge to respectively minimax (reported earlier in [Bigeeet al2001]) and Nash equilibrium
value-functions in the limit, under appropriate assummioWe also show experimentally that the
new method can not only learn better policies in competitieenains, but can also learn faster in
general-sum domains.

The rest of the paper is organized as follows. Section 2 dissithe existing work in multia-
gent Q-learning which we build upon. Section 3 presents thealicy hybridisation of these algo-
rithms and proves their convergence to desired fixed pointeuappropriate assumptions. Section
4 presents another hybrid technique for experimental coisgawith the other hybrids. Sections 5
and 6 present two experimental domains - soccer and tigbtipled navigation - with corresponding
results and discussions. Finally our conclusions and apg@into our ongoing and future research

in this area are outlined in section 6.

2 Multiagent Q-learning

First we present some basic definitions relevant to our work.

Definition 1 A Markov Decision Process (MDP) is a quadrudl, A, T, R}, whereS is the set of
states, A is the set of actionsT is the transition functionT” : S x A — PD(S), PD being a

probability distribution, and R is the reward functioR,: S x A — R.

A multiagent reinforcement-learning task can be modeled atochastic gamehich is an ex-

tension of an MDP, withS specifying the joint-state of the agent$,being the joint-actions of the
agents,A; x As x ... A, whereA; is the set of actions available to th&h agent, T’ as the joint-

transition function, and the reward function is redefined?asS x A — R™. The functionsI” and



R are usually unknown. The goal of th&h agent is to find a strategy; that maximizes its expected

sum of discounted rewards, given the others’ strategigs

o0
v(s,m;) = ZytE(rﬂm,ﬂ_i, S0 =S) 1)
t=0

where sy is the initial joint-state; is the reward of theth agent at timef, andy € [0,1) is the

discount factor

Definition 2 A bimatrix game is given by a pair of matricéd/;, M,), (each of sizeA; | x |Az| for
a two-agent game) where the payoff of thé agent for the joint actiorfa,, az) is given by the entry

Mk(al,ag), V(al,ag) € A1 x AQ, k= 1,2.

Each stage of a stochastic game for two agents (it can bededenn agents using.-dimensional
tables instead of matrices) can be looked upon as a bimadrixeg A zero-sum gamis a special

bimatrix game wheré/; (a1, as) + Ms(a1,a2) =0, V(ay,a2) € Ay X As.
Definition 3 A mixed-strategy Nash Equilibrium for a bimatrix garfid;, M>) is a pair of proba-
bility vectors(x, 73) such that

T My > ol Mymy ¥ € PD(A;).

WTTMQWS > WTTMQ']TQ Vg € PD(AQ)
wherePD(4;) is the set of probability-distributions over thig: agent’s action space.

No player in this game has any incentive for unilateral diémmafrom the Nash equilibrium strategy,
given the other's strategy. There always exists at leastsach equilibrium profile for an arbitrary

finite bimatrix game [Nash1951].



An individual learner may, but need not, use a model of therenment to learn the transition
and reward functions. Q-learning is one example of modsd-fearning. In greedy policy Q-learning,
an agent starts with arbitrary initi&(s, a) (or action values) for each state-action p@aira), and

repeatedly chooses actions, noting its rewards and tiamsiand updating) as

Q" (s1,a0) = (1 — ) Q" (51, a¢) + cufry + 0" (5141)]

where

v'(s141) = max Q' (st41, ). 2)

anda; € [0,1) is the learning rate. Watkins and Dayan (1992) have provatittte above iteration
converges to optimal action values under infinite samplihgazh state-action pair and a particular

schedule of the learning rate, given by

In the case of multiagent learning, the above iteration @adt work, since the maximization
over one’s action is insufficient in the presence of multipieors. However, if the reward function
of the opponent is negatively correlated, then actions easebected by solving the bimatrix-game
(M (s),—M(s)) greedily for the opponent, and pessimistically for onegelguarantee a minimum
expected payoff. This produces Littman’s minimax-Q altion for simultaneous-move zero-sum
games, for which the value function for agent 1 is

t - Tt
07 (s = max minmw s ) 3
1( t+1) 7EPD(A) 0€0 Ql( t+1s )7 ( )



where A andO are the action sets of the learning agent (agent 1) and itsr&op respectively, and
Q! (si41, -, 0) is a vector of action values of the learner correspondingstopponent’s action. The
current policyn(s) can be solved by linear programming for the constrained,imas optimiza-
tion onQ(s,.,.). The minimax-Q learning algorithm has been proved to cae¢o optimal action
values [Szepesvari and Littman1999].

For general-sum games, however, thie agent needs to know_;, in absence of which it has to
model its opponents. In such games, each agent can obsere¢htr agent’s actions and rewards
and maintains separate action values for each of them iniawldd its own [Hu and Wellman1998].

The value function for agent 1 in this case is

Vi (se41) = T (5041) T Q1 (Se41, - )75 (S141), (4)

where(n], 73) are the Nash-strategies of the agents for the bimatrix game

{Qtl(st-i-l? ) ')a Qg(st-i-ly ) )}7

which can be solved by quadratic programming technique pdaarian and Stonel1964]. In zero-

sum games, the value-function in (4) simplifies to

¢ . T At
v1(s = max min 7 S ., )To. 5
1(5¢41) 1P D(AL) e PD(As) 1 Q1(5t41, -, -)m2 (5)

This algorithm converges to a Nash equilibrium, for a resitré class of Nash equilibria [Hu and Wellman1998,
Bowling2000], though each agent can do so independentlienbthers. As a result, the agents are
not guaranteed to converge to their portions of a siegjeilibrium (in case there are multiple such)

even in self-play. We note in passing, that the two methaasl@entical value-functions in purely



competitive domains, though they may learn different pe$ic

3 On-policy concurrent Q-learning

The techniques discussed so far were all off-policy leayaiigorithms in that the update 6¥(s, a', a?)
depends om that relies on actions that are not taken. Minimax-Q leayrias been shown to con-
verge to optimal minimax values in (5) [Szepesvari andnhi#th1999]. ThesarsaA(0) algorithm is, on
the other hand, an on-policy learning method that dependgilijeon the actual learning policy fol-
lowed [Rummery1994, Sutton and Barto1998]. In generalpoffcy algorithms can separate control
from exploration while on-policy reinforcement learninlg@rithms cannot. Despite this, on-policy
algorithms with function approximation in single agentrildag appear to be superior to off-policy al-
gorithms in control as well as prediction problems [Bair839Boyan and Moore1995, Gordon2000,
Sutton1996, Tsitsiklis and Roy1997]. In particular, itliea/n that thesarsA(0) algorithm with func-
tion approximation converges at worst to a bounded regicord@n2000]. In contrast, Q-learning
with function approximation has been shown to diverge [@E®95]. On-policy algorithms can learn
to behave consistently with exploration [Sutton and Ba##88]. Often off-policy algorithms com-
pute a policy that they do not follow. Moreover, on-policgatithms are more natural to combine
with eligibility traces than off-policy algorithms are. Ehraises the following question that this re-
search effort endeavors to answer: Can on-policy RL algaorit perform equally well in multiagent
domains? In that case a hybrid of thersa techniqgue and Q-learning algorithms (viz. minimax-
sAarsA and Nashsarsa) might provide convergence with generalizability for largand otherwise
intractable problems. Below, we provide theoretical psoof convergence of the two algorithms

under duly stated assumptions.



3.1 Minimax-SARSA learning

In a simple Q-learning scenario, tlsarsa technique modifies the update rule (2)@$s;.1) =
Q'(s¢+1,a:11). Thus asarsaalgorithm learns the values of its own actions, and can agev® opti-
mal values only if the learning policy chooses optimal atdimn the limit. In a multiagent minimax-Q

setting, the rule (3) would be replaced, for agent 1, by

U§(3t+1) = Qﬁ(3t+1,at+1,0t+1),

while the policy to choose actions would still be computedtty original minimax-Q algorithm.
To achieve convergence of this algorithm to minimax-Q vsJuge follow ane-minimax strategy
that satisfies the need of infinite exploration while beingiimax in the limit, i.e.e decays to 0 in
the limit. We call such exploration ‘Minimax in the limit witinfinite exploration’ or MLIE. Our

convergence result rests on the following lemma estaldiflyg Singhet al.2000].

Lemma 1 Consider a stochastic process;( Af, F?), t > 0, wherea;, Al, F' : X — R satisfy the

equations

A (z) = (1 — ap(2)) Al (2) + oy () Fl (),
wherex € X, t =0,1,2,.... Let P, be a sequence of increasingfields such thaty, and A are
P, measurable andy;, A* and F'~! are P, measurablet = 1,2,.... Assume that the following
hold:
1. X is finite.

2.0 < oy(r) <1, 3, o) = 00, 3y a2 (x) < cow.p.l.
3. | E{F'*()|P}lw < 0||AY|w + i, whered € [0,1) and ¢; converges to 0 w.p.1. anfd|w is a

max-norm for a uniform weight-vectdi/’.



4. Var{F'(z)|P,} < B(1+ ||At||w)?, for some constant.

Then,A? converges to 0 with probability 1 (w.p.1).

The update rule fosarsafor agent 1 say, is

Qt1+1(3ta ai,01) = (1—cu)Q(st,ar,08) +

air{ +7Qf (st41, a1, 0041))- (6)

We also note that the fixed point of the minimax-Q algorithredf@esvari and Littman1999], for agent

1,is

Q1(st,a,0)) = Ri(se,ae,0) +

E,maxmin} Qi (y, .,0)]. ©
T o

Now we state and prove the theorem for convergence of minisaagalearning using Lemma 1.

Theorem 1 The learning rule specified in (6) converges to the valuesgjuagon (7) with probability
1 provideda; is chosen using an MLIE scheme at each stefhe immediate rewards are bounded
and have finite variance, the action values are stored inupdiables, the learning ratey,, satisfies

condition 2 in Lemma 1, and the opponent plays greedily idithi.

Proof: Writing = in Lemma 1 as4;, a;, o;) and A as QY (s, at, 01) — Q% (st, at, 0¢), and defining

at(s,a,0) = 0 unless(s, a, o) = (s¢, at,0¢) Vt, we have

At+l(3t7at70t) = Qt1+1(3t7at70t) - Qik(su at,ot)
= (1= a)Qf(st, ar, 00) + cufry + Q7 (se41,ar11,0041)] — Q7 (51, ar, o) (from 6)
= (1 - o)[Q1(st,ar,00) — Q1 (54, ar, 01)]

9



+at[7"t1 + fYin(St-i-la aty1,0e41) — Q1(St, ar, 0f)]

= (1 —Oét)At(St,at,Ot) +atFt(st,at,ot) (8)
whereF*(s;, as, 0;) can be further expanded as

Fl(sy,a5,00) = 11+ ’yrgr?xmoinwintl(sHl, ., 0)
— Q7 (51, a1,0¢) + ¥Q (St1, At41, 0141

-y II}TE%X Hloin W{Qtl(st-‘rlv ) 0)]7 (9)

which gives rise to

Ft(St,at,Ot) = F&(St,ataot) + [de (s, ar, 04)].

whereF?, (s, ar, 0) = 7} +~max,, min, 77 Q4 (s¢+1, -, 0) — Q% (s¢, ar, o). Consequently, we have
IELE (o, P < NIE{FY (oo )P+ AN E{de (- )P
It can be shown that the measurability and variance comditéoe satisfied and that
IE{ER; (- P < var| A

for some~y, € [0,1) (since minimax-Q operator is a contraction), accordinchdutline provided

by [Singhet al2000]. Therefore

IE{E (., )P < v |A*] + A1 E{de(., -, )| P}

10



Thus far, the proof was identical to [Singhal2000]. The next part of the proof is crucial for

establishing that; = ~| E{d:(.,.,.)|P;}|| vanishes in the limit, under MLIE exploration, and is a

novelty. We consider the following cases:

Case 1: Q% (st11,a111,011) > max,, min, 77 Q% (s411,.,0). Since

max min T Q1 (5141, ,0) > min Qf (s¢+1, ar+1, 0),

we have

dt(St,at,Ot) = ‘dt(staataot)’ < Qﬁ(3t+17at+1,0t+1) - moin Qﬁ(3t+1,at+1,0)

and the corresponding expected value vanishes in the fithitiopponent plays greedily in the

limit.

Case 2: max,, min, 77 Q4 (s111,-,0) > Q4 (5441, ar11,0¢+1). Again,

H}FE}X moin W?Qﬁ(st—%la - 0) < WTTQIE(SHI, “ 0t+1)
wheren; = arg max,, min, 77 Q}(s¢11,.,0). Hence
—dy(st, az, 00) = |di(s, ar, 00)| < 717 QY (541, -, 041) — QY (141, A1, 0141).

The associated expected value vanishes again in the liraitalthe assumption of an MLIE

policy on part of agent 1, and independent of the opponeertatior.

11



Let Cy(s¢, at, 0¢) be the maximum of the two upper limits dd, (s, a;, o;)| established above. We

see that

E{|d(st, at,01)|} < E{Cy(st,at,0t)}

and the right hand side vanishes for each state-action.tifgace,E{|d; (s, as, 0¢)|} vanishes for
each state-action tuple, which implies th&t{d;(., ., .)| P; }|| vanishes in the limit under MLIE explo-
ration and greedy play by the opponent in the limit. Settingn Lemma 1 toy||E{d(.,.,.)| P: }||, we
conclude that minimagArsa algorithm converges to the minimax-Q values under MLIE ergion
with probability 1, if the opponent plays greedily in the ltirand under appropriate structure @f.
[QE.D]

Note thatCase lneeds the boundedness®@f that can be established along the same lines as
in [Singhet al2000]. We could imagine a minimax-Q learning process thatatgs the same state-
action values as thearsa process and in the same order, thus making the former actioes upper
bounds for the corresponding values in the latter. Sinyilarininmax update rule in place of a maxmin
rule would establish the corresponding lower bounds anzkdioth are contractions, the convergence
of the baseline maxmin (minmax) processes are guarantegdght be argued that the condition of
greedy play by the opponent in the limit is restrictive. Ho@e this is typical of a convergence proof
of on-policy algorithms that requires more details of théars taken by the agents. Gains from
on-policy algorithms in terms of learning efficiency andtooffset the condition of greedy play in the
limit. We also note that the condition of of greedy play makeasse in competitive games only. In
general-sum domains the opponent playing a minimizingeggais not rationally justifiable, hence

the convergence proof is not useful in such cases.

12



3.2 NashSARSA learning

The extension of thearsamethod to Nash learning in general-sum domains is triviad. afly note

that the desired fixed point here (counterpart of equatios 7)

Q1(st,ar,00) = Ri(se,ar,00) +

Ey[mT Qi(y, ., )m3). (10)

where(r}, 73) are some Nash pair for the garfi@;, Q5 }. The same strategy as in minimaxrsa,

can be used to prove the convergence of Nastsa, but the restrictions introduced to the nature of
the games in the process, limits the applicability of thailtesTo demonstrate this, we focus on the
two cases as above (since the rest of the proof is identidtil,thhe observation that Nash operator is

a contraction according to [Hu and Wellman1998, BowlingZ0@nder certain assumptions, which

are therefore necessary in our proof as well).

Case 1. Q% (st11,a111,0011) > T Q4 (5441, -, - )75, where(r}, w3 ) are some Nash pair for the game

{Q%,Q%}. Since by definition of a Nash equilibrium,

WTTQi(St—i-l» ) )775 > Qtl(st—‘,-la at+1, .)W;,

we have

dt(3t7at70t) = ‘dt(staataot)’ < Q§(3t+17at+170t+1) - Qﬁ(3t+17at+17 )WS

and the corresponding expected value vanishes in the lithieiopponent plays its portion of

the same Nash equilibriuim the limit.

13



Case 2: 11T QY (5441, -, )™ > Q4 (st41, as1, 0111). Now, if the game(t) is such that any deviation

by the opponent from its portion of the Nash equilibrium &gy _increasethe payoff of the
learner, then

WTTQtl(St-i-la oy )ﬂ-; S WTTQﬁ(St-i—h .y Ot+1)

sinceo., 1 is a deviation by the opponent from its Nash equilibriumtseggt. This condition is
similar to [Hu and Wellman1998], but they (and later in [Bavg2000]) used more restrictions
in conjunction or disjunction with this. We also use one nrexsriction that the opponent must

play the same Nash equilibrium strategythe limit. Rather than being a further impediment,

this actually allows the players to converge to the samelibguim in self-play. It is also

justified in self-play since the players are using the samerihm. Now we have,

—dy(s¢,at,0t) = |di (s, at,00)| < 7T QL (Se415 5 0041) — QY (St415 Q15 044 1)-

The associated expected value vanishes again in the limitalthe assumption of an NELIE
(Nash equilibrium in the limit with infinite exploration) [ioy on part of agent 1, and indepen-

dent of the opponent’s behavior.

Thus Nashsarsaconverges to a Nash equilibrium under the same assumpsongtau and Wellman1998,
Bowling2000] and an additional assumption that the plaj@ilsw NELIE strategy which is trivially

true in self-play.

4  Minimax-Q(\)

Since Q-learning updates only one action value at a time ypiadl lookup table representation, it

is slow in learning the action values. A well-known techrigo speed up single agent Q-learning

14



is to integrate it with the TDX) estimators for estimating the action values, resultinghs multi-
step QQ)-learning algorithm [Peng and Williams1996]. Here thegmaeter) in Q(\) represents the
degree of bootstrapping (i.e. ®flearning recursively builds its estimates upon thenmeslywith

A = 0, as in Q or minimax-Q learning, representing the most extréonm of bootstrapping, and
A =1, as in Monte Carlo methods, representing no bootstrappiegactual returns are used as their
basis for building other estimates). While there is a rarfgesults that suggest that ®(learning is
generally more effective than simple Q-learning in singler#t domains, we are interested to know
if similar performance characteristics can be observedutiragent environments, and in particular
its comparison with the on-policy methods. We evaluate tirdmax-Q(\) algorithm primarily for
interesting experimental comparisons with the algoritipresented earlier in the paper.

We note that for experimentation, we have used a computljomore efficient version of
the Peng-Williams’ algorithm, where the action value updaare ‘lazily’ postponed until neces-
sary [Wiering and Schmidhuber1998]. X)(can be applied to each of the two learning schemes in
section 2, by defining(s.+1) in the QQ\) learning algorithm by the equation in (3) or (4) as the case

may be. The guarantee of convergence, however, may no |tadgr

5 Experiments in a competitive domain

To evaluate the proposed schemes, we used the purely ctirgsticcer domain [Littman1994]. Itis
a4 x 5 grid containing two agents} and B, as shown in figure 1, that always occupy distinct squares.
The goal of agent is on the left, and that oB on right. The figure 1 shows the initial positions
of the agents, with the ball being given to an agent at randotineastart of each game (agefitin
figure). Each agent can choose from a fixed set of five actiopadt state: going up, left, down or

right, or staying where it is.

15



Figure 1: The experimental soccer domain.

When both the agents have selected their actions, thesmsetie executed in a random order. If
an agent bumps onto another, the stationary agent recbiwdmtl, and the movement fails. An agent
receives reinforcements of +1 for a goal scored or a self-gpahe opponent and -1 for a self-goal
or a goal scored by the opponent. This payoff scheme mataazero-sum character of the game.
In all other cases the reinforcement received by an agergris. ZWhenever a non-zero reward is
received, the game resets to the initial configuration.

We refer to an agent following Littman’s minimax-Q algorithas an M-agent. In the training
phase of the experiments, we performed symmetric trainetgvéen two ordinary M-agents, two
M-agents both using th@(\) algorithm, and two M-agents both using thersa algorithm. The
respective policies learnt, are denoteddd/;, AM M;, sM M;, which are recorded at the end of
eachi x 10000 iterations. Each training lasted 100,000 iterations. Wedusglentical exploration-
probabilities as that by Littman (1994) and the decay-fiaftinthe learning-rate was set to 0.999954.

In the test phase, we allowed ai/ M; policy to play against aid/ M; policy, for: = 1...10.

16
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Percentage of games won by sMM against MM
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1 2 3 4 5 6 7 8 9 10

Number of iterations (10,000s)

Figure 2: Games are played by M; againstM M; for various values of (horizontal axis). The
percentages of wins (vertical axis) by the former for vasidare plotted (averaged over 10 runs).

Each test iteration results in a draw with a probability d#f).to break possible deadlocks. 100,000
such iterations were conducted in each run and the resyléaoéntages of win by thell M; policies
over its opponent averaged over 10 runs are reported in fiRjufde approximate trend suggests that
ordinary minimax-Q initially dominates but minimaarsa gradually catches up and outperforms
the former. In figure 3, the corresponding results from pigyAM M; againstM M; are shown.
In this case the minimax-QJ algorithm outperforms the ordinary minimax-Q algorithnorh the
very beginning. However, th&M M policies gradually lose their edge as the ordinary minimax-
Q algorithm learns better progressively. The figure 4 carrates these observations, a5/ M;
performs well against M M;, but this performance decays with increasing was set to 0.7 in both
experiments.

We note that minimax-Q\) learns better policies than ordinary minimax, early ont Burpris-
ingly, minimaxsarsaalso learns better policies than the latter, during the ladet of the experimen-

tal phase. We also stress that the results reported arefardonvergence, at which all the algorithms

17
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40

Percentage of games won by AMM against MM
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10
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1 2 3 4 5 6 7 8 9 10
Number of iterations (10,000s)

Figure 3: Games are played by M; againstM M; for various values ot (horizontal axis). The
percentages of wins (vertical axis) by the former for vasidare plotted (averaged over 10 runs).

should perform equally well.

The reason why sMM beats MM can be understood in the conte@tugddates. While sSMM uses
the actual action value from the next state to update thegtstate, MM still uses the minimax value
from the next state, which postpones relying on the indi@idable-entries. For example, consider
the state transition fron%; to S, in figure 5. The bold arrows mark the actions chosen by the two

agents. Then the update for MM will be

Q(S1,a12,013) = (1 — o) Q(S1, a12,013) + oy[r + v * 0]

since the minimax value &, is 0. However, the update farrsais

Q(Sl,alg, 013) = (1 — at)Q(Sl,a12,013) + Oét[T‘ + Y o* 10].

The zero values in tablé; may be due to insufficient exploration or may be their trueigal Hence,

18
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Figure 4: Games are played by M; againstsM M; for various values of. The percentages of
wins (averaged over 10 runs) by the former for varioase plotted.

the information that there is something interestingSinis backpropagated more expeditiously in
sMM than in MM, but this happens after an initial lull when b&M and sMM are in the exploratory
state and are equally ignorant of the domain. Later with necygoration, we expect MM to catch
up (in figure 2) as learning continues. It is noteworthy tha same argument is inapplicable in
ordinary Q-learning versusarsa for a single agent learning scenario. Consider the singientas
(013 for S; andoyy for Ss) in figure 5. The value 10 will be used in the Q-update for bdth t
algorithms, assuming same actions are selected in botk.dds@ce, the speedup achieved by sMM
over MM is crucially dependent on the pessimistic charagteninimax strategy itself. We might not
expect a comparable speedup in Nashsa, and experimental verification of this intuition would be

interesting.
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Figure 5: A sample state transition showing action-sadectreward and action values for the row
agent.

6 Experiments in a general-sum domain

We note that the minimax-Q algorithm is applicable in gehstan domains as well, where the ra-
tionale of the assumption of minimizing policy of the oppohés to guarantee a minimum security
level to the learner, instead of maximizing the reward of dpponent itself as in the zero-sum in-
terpretation. Thesarsa and Q(A) versions will still work in such domains. For the purpose of
experimentation, we introduce a general-sum problem tleatall “tightly coupled navigation.”

This problem is at x 3 grid world as shown in figure 6. The values in the lower leftreorof
each cell in figure 6 is the reward to agent 1 for reaching thestorresponding to that cell. Similarly
the values in the upper right corner are those for agent 2.rélards in this domain are state-based,
i.e. the reward corresponding to a cell is received if thenégeeach or remain in that cell. Here the
agents are tightly coupled as they must always occupy the sathand the next position and the

payoff received by the agents are determined by both of #ations in every step. Contrast this with
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Figure 6: The tightly coupled navigation domain.

the “soccer game” domain, which is less tightly coupled site position and the payoff received by
an agent is dependent on the other agent’s action only whemtsagre in close proximity. Here each
agent has three available actions in each state, viz. um digit. However, since they are coupled,
they can move only when they choose the same action; othethéy remain in the same state. The
starting and the absorbing states have been shown in the figuwWWhen the agents reach the goal
state, each receives the reward 20 and without making angteal this iteration, the game restarts
with the agents reshifted to the start-state and updatéa bage again.

A realistic scenario for this domain is two men carrying acgief heavy furniture. The furniture
moves in a given direction if both the agents move in thatatioe; otherwise the furniture does not
move (falls off from their hands). It should be assumed thaytare not coordinating their moves by
explicit communication, but are only observing the moves e subsequent situation of the other.
There may be different paths that the agents wish to follonetah their common goal. However,

since they are tightly coupled, they must strike a comprerai®d find an intermediate path that both
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can be maximally satisfied with, given the coupling.
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RMS error between learned and actual Q-tables
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Figure 7: Mean RMS deviation plots of minimaxrsa (solid) and ordinary minimax-Q for proba-
bility of reward-generation = 0.

We have symmetrically trained two minimax-Q and two miningarsa agents in this domain.
The exploration probabilities for the agents in each iteratvas 0.2, the same as in the soccer domain.
We varied the probability of reward-generation in eachaitien from 0 to 0.5 to 1.0, where 0 stands
for the case where rewards are generated only when the ageiets the goal state and a probability
of 1.0 stands for a reward generated at each step. We warnséabtipthe effect of infrequent rewards,
which is a realistic scenario in most practical domains, fe donvergence of our algorithms. We
expected the convergence rates to fall with more and moregoént rewards. In order to study the
convergence, the exattinimax action values were computed off-line and an aveRIgS deviation
of the learned action values every 1000 training-iteratiowere plotted. The trainings lasted a total of
10,000 iterations.

From figures 7, 8 and 9, we can see that the minirseasa algorithm always approaches min-

imax values faster than the ordinary minimax-Q algorithmheTerrors in all the cases decrease
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RMS error between learned and actual Q-tables
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Figure 8: Mean RMS deviation plots of minimaxrsa (solid) and ordinary minimax-Q for proba-
bility of reward-generation = 0.5.

monotonically which suggests that both the algorithms extentually converge. As expected, the

error-levels fall with increasing probability of rewarageration.

7 Conclusion and future work

We conclude that both thexrsaand@(\) versions of minimax-Q learn better policies early on, than
Littman’s minimax-Q algorithm, and more so for ti&\) algorithm. Though this latter algorithm
works well, we are not aware of the theoretical convergenopgrties of this method. Exploring
these properties is one open area. We also note that a carohiwé minimaxsarsa and@()\) to
form what could be called minimasarsa(\), would probably be more efficient than either of the
two, by naturally combining their disjoint areas of expeug seen in the plots in figures 2 and 3.

We plan to conduct more experiments with all these hybridmtigms.
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RMS error between learned and actual Q-tables
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Figure 9: Mean RMS deviation plots of minimaxrsa (solid) and ordinary minimax-Q for proba-
bility of reward-generation = 1.0.
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