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Abstract

When an agent learns in a multiagent environment, the payoffit receives is dependent on

the behavior of the other agents. If the other agents are alsolearning, its reward distribution

becomes non-stationary. This makes learning in multiagentsystems more difficult than single-

agent learning. Prior attempts at value-function based learning in such domains have used off-

policy Q-learning that do not scale well as the cornerstone,with restricted success. We study

on-policy modifications of such algorithms, with the promise of scalability and efficiency. In

particular we prove that these hybrid techniques are guaranteed to converge to their desired fixed

points under some restrictions. We also show experimentally, that the new techniques can learn

(from self-play) better policies than the previous algorithms (also in self-play) during some phases

of the exploration.
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1 Introduction

The reinforcement learning (RL) paradigm provides techniques using which an individual agent can

optimize its environmental payoff. However, the presence of a non-stationary environment, cen-

tral to multi-agent learning (MAL), violates the assumptions underlying convergence proofs of sin-

gle agent RL techniques. As a result, standard reinforcement learning techniques like Q-learning

[Watkins1989] are not guaranteed to converge in a multi-agent environment. The focus of con-

vergence for multiple, concurrent learners is on an equilibrium strategy-profile rather than optimal

strategies for the individual agents.

The stochastic-game (or Markov Games) framework, a generalization of Markov Decision Pro-

cesses for multiple controllers, has been used to model learning by agents in purely competitive

domains [Littman1994, Sandholm and Crites1996, Hu and Wellman1998, Bowling and Veloso2002].

In [Littman1994] the author has presented a minimax-Q learning algorithm and evaluated its per-

formance experimentally. Hu and Wellman (1998) (along withfurther research in [Bowling2000,

Littman2001]) extended Littman’s framework to enable the agents to converge to a mixed-strategy

Nash equilibrium in general-sum games. The Q-learning algorithm, being a model-free and on-

line learning technique, is particularly suited for multi-stage games, and as such, an attractive can-

didate for multiagent-learning in uncertain environments. However, one major problem with Q-

learning is scalability. The table based representation proves intractable in large problems. In multi-

agent environments in particular, this is even more pronounced since the state-action space grows

exponentially in the number of agents. At the same time, Q-learning with function approxima-

tion has been shown to diverge [Baird1995], whileSARSA(0), an on-policy version of Q-learning

[Rummery1994, Sutton and Barto1998], with function approximation has been demonstrated to con-

verge to a bounded region at worst [Gordon2000]. Consequently, SARSA(0) looks attractive for hybri-
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dising with previous Q-learning based MAL algorithms. In this paper we presentSARSA(0) versions

of concurrent Q-learning for competitive as well as general-sum domains, and prove that they can

converge to respectively minimax (reported earlier in [Banerjeeet al.2001]) and Nash equilibrium

value-functions in the limit, under appropriate assumptions. We also show experimentally that the

new method can not only learn better policies in competitivedomains, but can also learn faster in

general-sum domains.

The rest of the paper is organized as follows. Section 2 discusses the existing work in multia-

gent Q-learning which we build upon. Section 3 presents the on-policy hybridisation of these algo-

rithms and proves their convergence to desired fixed points under appropriate assumptions. Section

4 presents another hybrid technique for experimental comparison with the other hybrids. Sections 5

and 6 present two experimental domains - soccer and tightly coupled navigation - with corresponding

results and discussions. Finally our conclusions and a glimpse into our ongoing and future research

in this area are outlined in section 6.

2 Multiagent Q-learning

First we present some basic definitions relevant to our work.

Definition 1 A Markov Decision Process (MDP) is a quadruple{S,A, T,R}, whereS is the set of

states,A is the set of actions,T is the transition function,T : S × A → PD(S), PD being a

probability distribution, and R is the reward function,R : S × A → ℜ.

A multiagent reinforcement-learning task can be modeled asa stochastic gamewhich is an ex-

tension of an MDP, withS specifying the joint-state of the agents,A being the joint-actions of the

agents,A1 × A2 × . . . An whereAi is the set of actions available to theith agent,T as the joint-

transition function, and the reward function is redefined asR : S × A → ℜn. The functionsT and
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R are usually unknown. The goal of theith agent is to find a strategyπi that maximizes its expected

sum of discounted rewards, given the others’ strategiesπ−i

v(s, πi) =
∞∑

t=0

γtE(ri
t|πi, π−i, s0 = s) (1)

wheres0 is the initial joint-state,ri
t is the reward of theith agent at timet, andγ ∈ [0, 1) is the

discount factor

Definition 2 A bimatrix game is given by a pair of matrices,(M1,M2), (each of size|A1| × |A2| for

a two-agent game) where the payoff of thekth agent for the joint action(a1, a2) is given by the entry

Mk(a1, a2), ∀(a1, a2) ∈ A1 × A2, k = 1, 2.

Each stage of a stochastic game for two agents (it can be extended ton agents usingn-dimensional

tables instead of matrices) can be looked upon as a bimatrix game. A zero-sum gameis a special

bimatrix game whereM1(a1, a2) + M2(a1, a2) = 0, ∀(a1, a2) ∈ A1 × A2.

Definition 3 A mixed-strategy Nash Equilibrium for a bimatrix game(M1,M2) is a pair of proba-

bility vectors(π∗

1 , π
∗

2) such that

π∗T
1 M1π

∗

2 ≥ πT
1 M1π

∗

2 ∀π1 ∈ PD(A1).

π∗T
1 M2π

∗

2 ≥ π∗T
1 M2π2 ∀π2 ∈ PD(A2).

wherePD(Ai) is the set of probability-distributions over theith agent’s action space.

No player in this game has any incentive for unilateral deviation from the Nash equilibrium strategy,

given the other’s strategy. There always exists at least onesuch equilibrium profile for an arbitrary

finite bimatrix game [Nash1951].
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An individual learner may, but need not, use a model of the environment to learn the transition

and reward functions. Q-learning is one example of model-free learning. In greedy policy Q-learning,

an agent starts with arbitrary initialQ(s, a) (or action values) for each state-action pair(s, a), and

repeatedly chooses actions, noting its rewards and transitions and updatingQ as

Qt+1(st, at) = (1 − αt)Q
t(st, at) + αt[rt + γvt(st+1)]

where

vt(st+1) = max
a

Qt(st+1, a). (2)

andαt ∈ [0, 1) is the learning rate. Watkins and Dayan (1992) have proved that the above iteration

converges to optimal action values under infinite sampling of each state-action pair and a particular

schedule of the learning rate, given by

0 ≤ αt(x) ≤ 1,
∑

t

αt(x) = ∞,
∑

t

α2
t (x) < ∞.

In the case of multiagent learning, the above iteration would not work, since the maximization

over one’s action is insufficient in the presence of multipleactors. However, if the reward function

of the opponent is negatively correlated, then actions can be selected by solving the bimatrix-game

(M(s),−M(s)) greedily for the opponent, and pessimistically for oneself, to guarantee a minimum

expected payoff. This produces Littman’s minimax-Q algorithm for simultaneous-move zero-sum

games, for which the value function for agent 1 is

vt
1(st+1) = max

π∈PD(A)
min
o∈O

πT Qt
1(st+1, ., o), (3)
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whereA andO are the action sets of the learning agent (agent 1) and its opponent respectively, and

Qt
1(st+1, ., o) is a vector of action values of the learner corresponding to its opponent’s actiono. The

current policyπ(s) can be solved by linear programming for the constrained, minimax optimiza-

tion onQ(s, ., .). The minimax-Q learning algorithm has been proved to converge to optimal action

values [Szepesvári and Littman1999].

For general-sum games, however, theith agent needs to knowπ−i, in absence of which it has to

model its opponents. In such games, each agent can observe the other agent’s actions and rewards

and maintains separate action values for each of them in addition to its own [Hu and Wellman1998].

The value function for agent 1 in this case is

vt
1(st+1) = π∗

1(st+1)
T Qt

1(st+1, ., .)π
∗

2(st+1), (4)

where(π∗

1 , π
∗

2) are the Nash-strategies of the agents for the bimatrix game

{Qt
1(st+1, ., .), Q

t
2(st+1, ., .)},

which can be solved by quadratic programming technique [Mangasarian and Stone1964]. In zero-

sum games, the value-function in (4) simplifies to

vt
1(st+1) = max

π1∈PD(A1)
min

π2∈PD(A2)
πT

1 Qt
1(st+1, ., .)π2. (5)

This algorithm converges to a Nash equilibrium, for a restrictive class of Nash equilibria [Hu and Wellman1998,

Bowling2000], though each agent can do so independently of the others. As a result, the agents are

not guaranteed to converge to their portions of a singleequilibrium (in case there are multiple such)

even in self-play. We note in passing, that the two methods learn identical value-functions in purely
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competitive domains, though they may learn different policies.

3 On-policy concurrent Q-learning

The techniques discussed so far were all off-policy learning algorithms in that the update ofQ(s, a1, a2)

depends onv that relies on actions that are not taken. Minimax-Q learning has been shown to con-

verge to optimal minimax values in (5) [Szepesvári and Littman1999]. TheSARSA(0) algorithm is, on

the other hand, an on-policy learning method that depends heavily on the actual learning policy fol-

lowed [Rummery1994, Sutton and Barto1998]. In general, off-policy algorithms can separate control

from exploration while on-policy reinforcement learning algorithms cannot. Despite this, on-policy

algorithms with function approximation in single agent learning appear to be superior to off-policy al-

gorithms in control as well as prediction problems [Baird1995, Boyan and Moore1995, Gordon2000,

Sutton1996, Tsitsiklis and Roy1997]. In particular, it is shown that theSARSA(0) algorithm with func-

tion approximation converges at worst to a bounded region [Gordon2000]. In contrast, Q-learning

with function approximation has been shown to diverge [Baird1995]. On-policy algorithms can learn

to behave consistently with exploration [Sutton and Barto1998]. Often off-policy algorithms com-

pute a policy that they do not follow. Moreover, on-policy algorithms are more natural to combine

with eligibility traces than off-policy algorithms are. This raises the following question that this re-

search effort endeavors to answer: Can on-policy RL algorithms perform equally well in multiagent

domains? In that case a hybrid of theSARSA technique and Q-learning algorithms (viz. minimax-

SARSA and Nash-SARSA) might provide convergence with generalizability for larger and otherwise

intractable problems. Below, we provide theoretical proofs of convergence of the two algorithms

under duly stated assumptions.
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3.1 Minimax-SARSA learning

In a simple Q-learning scenario, theSARSA technique modifies the update rule (2) asvt(st+1) =

Qt(st+1, at+1). Thus aSARSAalgorithm learns the values of its own actions, and can converge to opti-

mal values only if the learning policy chooses optimal actions in the limit. In a multiagent minimax-Q

setting, the rule (3) would be replaced, for agent 1, by

vt
1(st+1) = Qt

1(st+1, at+1, ot+1),

while the policy to choose actions would still be computed bythe original minimax-Q algorithm.

To achieve convergence of this algorithm to minimax-Q values, we follow anǫ-minimax strategy

that satisfies the need of infinite exploration while being minimax in the limit, i.e. ǫ decays to 0 in

the limit. We call such exploration ‘Minimax in the limit with infinite exploration’ or MLIE. Our

convergence result rests on the following lemma established by [Singhet al.2000].

Lemma 1 Consider a stochastic process (αt, ∆t, F t), t ≥ 0, whereαt,∆
t, F t : X → ℜ satisfy the

equations

∆t+1(x) = (1 − αt(x))∆t(x) + αt(x)F t(x),

wherex ∈ X, t = 0, 1, 2, . . . . Let Pt be a sequence of increasingσ-fields such thatα0 and∆0 are

P0 measurable andαt, ∆t and F t−1 are Pt measurable,t = 1, 2, . . .. Assume that the following

hold:

1. X is finite.

2. 0 ≤ αt(x) ≤ 1,
∑

t αt(x) = ∞,
∑

t α2
t (x) < ∞ w.p.1.

3. ‖E{F t(.)|Pt}‖W ≤ δ‖∆t‖W + ct, whereδ ∈ [0, 1) and ct converges to 0 w.p.1. and‖.‖W is a

max-norm for a uniform weight-vector,W .
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4. V ar{F t(x)|Pt} ≤ β(1 + ‖∆t‖W )2, for some constantβ.

Then,∆t converges to 0 with probability 1 (w.p.1).

The update rule forSARSA for agent 1 say, is

Qt+1
1 (st, at, ot) = (1 − αt)Q

t
1(st, at, ot) +

αt[r
1
t + γQt

1(st+1, at+1, ot+1)]. (6)

We also note that the fixed point of the minimax-Q algorithm [Szepesvári and Littman1999], for agent

1, is

Q∗

1(st, at, ot) = R1(st, at, ot) +

Ey[max
π1

min
o

πT
1 Q∗

1(y, ., o)]. (7)

Now we state and prove the theorem for convergence of minimax-SARSA learning using Lemma 1.

Theorem 1 The learning rule specified in (6) converges to the values in equation (7) with probability

1 providedat is chosen using an MLIE scheme at each stept, the immediate rewards are bounded

and have finite variance, the action values are stored in lookup tables, the learning rate,αt, satisfies

condition 2 in Lemma 1, and the opponent plays greedily in thelimit.

Proof: Writing x in Lemma 1 as (st, at, ot) and∆t asQt
1(st, at, ot) − Q∗

1(st, at, ot), and defining

αt(s, a, o) = 0 unless(s, a, o) = (st, at, ot) ∀t, we have

∆t+1(st, at, ot) = Qt+1
1 (st, at, ot) − Q∗

1(st, at, ot)

= (1 − αt)Q
t
1(st, at, ot) + αt[r

1
t + γQt

1(st+1, at+1, ot+1)] − Q∗

1(st, at, ot)(from 6)

= (1 − αt)[Q
t
1(st, at, ot) − Q∗

1(st, at, ot)]

9



+αt[r
1
t + γQt

1(st+1, at+1, ot+1) − Q∗

1(st, at, ot)]

= (1 − αt)∆
t(st, at, ot) + αtF

t(st, at, ot) (8)

whereF t(st, at, ot) can be further expanded as

F t(st, at, ot) = r1
t + γ max

π1

min
o

πT
1 Qt

1(st+1, ., o)

−Q∗

1(st, at, ot) + γQt
1(st+1, at+1, ot+1)

−γ max
π1

min
o

πT
1 Qt

1(st+1, ., o)], (9)

which gives rise to

F t(st, at, ot) = F t
M (st, at, ot) + γ[dt(st, at, ot)].

whereF t
M (st, at, ot) = r1

t +γ maxπ1
mino πT

1 Qt
1(st+1, ., o)−Q∗

1(st, at, ot). Consequently, we have

‖E{F t(., ., .)|Pt}‖ ≤ ‖E{F t
M (., ., .)|Pt}‖ + γ‖E{dt(., ., .)|Pt}‖

It can be shown that the measurability and variance conditions are satisfied and that

‖E{F t
M (., ., .)|Pt}‖ ≤ γM‖∆t‖

for someγM ∈ [0, 1) (since minimax-Q operator is a contraction), according to the outline provided

by [Singhet al.2000]. Therefore

‖E{F t(., ., .)|Pt}‖ ≤ γM‖∆t‖ + γ‖E{dt(., ., .)|Pt}‖
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Thus far, the proof was identical to [Singhet al.2000]. The next part of the proof is crucial for

establishing thatct = γ‖E{dt(., ., .)|Pt}‖ vanishes in the limit, under MLIE exploration, and is a

novelty. We consider the following cases:

Case 1: Qt
1(st+1, at+1, ot+1) ≥ maxπ1

mino πT
1 Qt

1(st+1, ., o). Since

max
π1

min
o

πT
1 Qt

1(st+1, ., o) ≥ min
o

Qt
1(st+1, at+1, o),

we have

dt(st, at, ot) = |dt(st, at, ot)| ≤ Qt
1(st+1, at+1, ot+1) − min

o
Qt

1(st+1, at+1, o)

and the corresponding expected value vanishes in the limit if the opponent plays greedily in the

limit.

Case 2: maxπ1
mino πT

1 Qt
1(st+1, ., o) ≥ Qt

1(st+1, at+1, ot+1). Again,

max
π1

min
o

πT
1 Qt

1(st+1, ., o) ≤ π∗T
1 Qt

1(st+1, ., ot+1)

whereπ∗

1 = arg maxπ1
mino πT

1 Qt
1(st+1, ., o). Hence

−dt(st, at, ot) = |dt(st, at, ot)| ≤ π∗T
1 Qt

1(st+1, ., ot+1) − Qt
1(st+1, at+1, ot+1).

The associated expected value vanishes again in the limit due to the assumption of an MLIE

policy on part of agent 1, and independent of the opponent’s behavior.
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Let Ct(st, at, ot) be the maximum of the two upper limits on|dt(st, at, ot)| established above. We

see that

E{|dt(st, at, ot)|} ≤ E{Ct(st, at, ot)}

and the right hand side vanishes for each state-action tuple. Hence,E{|dt(st, at, ot)|} vanishes for

each state-action tuple, which implies that‖E{dt(., ., .)|Pt}‖ vanishes in the limit under MLIE explo-

ration and greedy play by the opponent in the limit. Settingct in Lemma 1 toγ‖E{dt(., ., .)|Pt}‖, we

conclude that minimax-SARSA algorithm converges to the minimax-Q values under MLIE exploration

with probability 1, if the opponent plays greedily in the limit, and under appropriate structure ofαt.

[Q.E.D.]

Note thatCase 1needs the boundedness ofQt
1 that can be established along the same lines as

in [Singhet al.2000]. We could imagine a minimax-Q learning process that updates the same state-

action values as theSARSAprocess and in the same order, thus making the former action values upper

bounds for the corresponding values in the latter. Similarly a minmax update rule in place of a maxmin

rule would establish the corresponding lower bounds and since both are contractions, the convergence

of the baseline maxmin (minmax) processes are guaranteed. It might be argued that the condition of

greedy play by the opponent in the limit is restrictive. However, this is typical of a convergence proof

of on-policy algorithms that requires more details of the actions taken by the agents. Gains from

on-policy algorithms in terms of learning efficiency and cost offset the condition of greedy play in the

limit. We also note that the condition of of greedy play makessense in competitive games only. In

general-sum domains the opponent playing a minimizing strategy is not rationally justifiable, hence

the convergence proof is not useful in such cases.
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3.2 Nash-SARSA learning

The extension of theSARSA method to Nash learning in general-sum domains is trivial. We only note

that the desired fixed point here (counterpart of equation 7)is

Q∗

1(st, at, ot) = R1(st, at, ot) +

Ey[π
∗T
1 Q∗

1(y, ., .)π∗

2 ]. (10)

where(π∗

1 , π
∗

2) are some Nash pair for the game{Q∗

1, Q
∗

2}. The same strategy as in minimax-SARSA,

can be used to prove the convergence of Nash-SARSA, but the restrictions introduced to the nature of

the games in the process, limits the applicability of the result. To demonstrate this, we focus on the

two cases as above (since the rest of the proof is identical, with the observation that Nash operator is

a contraction according to [Hu and Wellman1998, Bowling2000], under certain assumptions, which

are therefore necessary in our proof as well).

Case 1: Qt
1(st+1, at+1, ot+1) ≥ π∗T

1 Qt
1(st+1, ., .)π

∗

2 , where(π∗

1 , π
∗

2) are some Nash pair for the game

{Qt
1, Q

t
2}. Since by definition of a Nash equilibrium,

π∗T
1 Qt

1(st+1, ., .)π
∗

2 ≥ Qt
1(st+1, at+1, .)π

∗

2 ,

we have

dt(st, at, ot) = |dt(st, at, ot)| ≤ Qt
1(st+1, at+1, ot+1) − Qt

1(st+1, at+1, .)π
∗

2

and the corresponding expected value vanishes in the limit if the opponent plays its portion of

the same Nash equilibriumin the limit.
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Case 2: π∗T
1 Qt

1(st+1, ., .)π
∗

2 ≥ Qt
1(st+1, at+1, ot+1). Now, if the game (∀t) is such that any deviation

by the opponent from its portion of the Nash equilibrium strategy increasesthe payoff of the

learner, then

π∗T
1 Qt

1(st+1, ., .)π
∗

2 ≤ π∗T
1 Qt

1(st+1, ., ot+1)

sinceot+1 is a deviation by the opponent from its Nash equilibrium strategy. This condition is

similar to [Hu and Wellman1998], but they (and later in [Bowling2000]) used more restrictions

in conjunction or disjunction with this. We also use one morerestriction that the opponent must

play the same Nash equilibrium strategyin the limit. Rather than being a further impediment,

this actually allows the players to converge to the same equilibrium in self-play. It is also

justified in self-play since the players are using the same algorithm. Now we have,

−dt(st, at, ot) = |dt(st, at, ot)| ≤ π∗T
1 Qt

1(st+1, ., ot+1) − Qt
1(st+1, at+1, ot+1).

The associated expected value vanishes again in the limit due to the assumption of an NELIE

(Nash equilibrium in the limit with infinite exploration) policy on part of agent 1, and indepen-

dent of the opponent’s behavior.

Thus Nash-SARSAconverges to a Nash equilibrium under the same assumptions as in [Hu and Wellman1998,

Bowling2000] and an additional assumption that the playersfollow NELIE strategy which is trivially

true in self-play.

4 Minimax-Q(λ)

Since Q-learning updates only one action value at a time in a typical lookup table representation, it

is slow in learning the action values. A well-known technique to speed up single agent Q-learning
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is to integrate it with the TD(λ) estimators for estimating the action values, resulting inthe multi-

step Q(λ)-learning algorithm [Peng and Williams1996]. Here the parameterλ in Q(λ) represents the

degree of bootstrapping (i.e. Q(λ)-learning recursively builds its estimates upon themselves), with

λ = 0, as in Q or minimax-Q learning, representing the most extreme form of bootstrapping, and

λ = 1, as in Monte Carlo methods, representing no bootstrapping (i.e. actual returns are used as their

basis for building other estimates). While there is a range of results that suggest that Q(λ) learning is

generally more effective than simple Q-learning in single agent domains, we are interested to know

if similar performance characteristics can be observed in multi-agent environments, and in particular

its comparison with the on-policy methods. We evaluate the minimax-Q(λ) algorithm primarily for

interesting experimental comparisons with the algorithmspresented earlier in the paper.

We note that for experimentation, we have used a computationally more efficient version of

the Peng-Williams’ algorithm, where the action value updates are ‘lazily’ postponed until neces-

sary [Wiering and Schmidhuber1998]. Q(λ) can be applied to each of the two learning schemes in

section 2, by definingv(st+1) in the Q(λ) learning algorithm by the equation in (3) or (4) as the case

may be. The guarantee of convergence, however, may no longerhold.

5 Experiments in a competitive domain

To evaluate the proposed schemes, we used the purely competitive soccer domain [Littman1994]. It is

a4×5 grid containing two agents,A andB, as shown in figure 1, that always occupy distinct squares.

The goal of agentA is on the left, and that ofB on right. The figure 1 shows the initial positions

of the agents, with the ball being given to an agent at random at the start of each game (agentB in

figure). Each agent can choose from a fixed set of five actions ateach state: going up, left, down or

right, or staying where it is.

15



A

B

Figure 1: The experimental soccer domain.

When both the agents have selected their actions, these actions are executed in a random order. If

an agent bumps onto another, the stationary agent receives the ball, and the movement fails. An agent

receives reinforcements of +1 for a goal scored or a self-goal by the opponent and -1 for a self-goal

or a goal scored by the opponent. This payoff scheme maintains the zero-sum character of the game.

In all other cases the reinforcement received by an agent is zero. Whenever a non-zero reward is

received, the game resets to the initial configuration.

We refer to an agent following Littman’s minimax-Q algorithm as an M-agent. In the training

phase of the experiments, we performed symmetric training between two ordinary M-agents, two

M-agents both using theQ(λ) algorithm, and two M-agents both using theSARSA algorithm. The

respective policies learnt, are denoted asMMi, λMMi, sMMi, which are recorded at the end of

eachi × 10000 iterations. Each training lasted 100,000 iterations. We used identical exploration-

probabilities as that by Littman (1994) and the decay-factor for the learning-rate was set to 0.999954.

In the test phase, we allowed ansMMi policy to play against anMMi policy, for i = 1 . . . 10.
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Figure 2: Games are played bysMMi againstMMi for various values ofi (horizontal axis). The
percentages of wins (vertical axis) by the former for various i are plotted (averaged over 10 runs).

Each test iteration results in a draw with a probability of 0.05, to break possible deadlocks. 100,000

such iterations were conducted in each run and the resultantpercentages of win by thesMMi policies

over its opponent averaged over 10 runs are reported in figure2. The approximate trend suggests that

ordinary minimax-Q initially dominates but minimax-SARSA gradually catches up and outperforms

the former. In figure 3, the corresponding results from playing λMMi againstMMi are shown.

In this case the minimax-Q(λ) algorithm outperforms the ordinary minimax-Q algorithm from the

very beginning. However, theλMM policies gradually lose their edge as the ordinary minimax-

Q algorithm learns better progressively. The figure 4 corroborates these observations, asλMMi

performs well againstsMMi, but this performance decays with increasingi. λ was set to 0.7 in both

experiments.

We note that minimax-Q(λ) learns better policies than ordinary minimax, early on. But surpris-

ingly, minimax-SARSAalso learns better policies than the latter, during the later part of the experimen-

tal phase. We also stress that the results reported are far from convergence, at which all the algorithms
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Figure 3: Games are played byλMMi againstMMi for various values ofi (horizontal axis). The
percentages of wins (vertical axis) by the former for various i are plotted (averaged over 10 runs).

should perform equally well.

The reason why sMM beats MM can be understood in the context ofQ updates. While sMM uses

the actual action value from the next state to update the current state, MM still uses the minimax value

from the next state, which postpones relying on the individual table-entries. For example, consider

the state transition fromS1 to S2 in figure 5. The bold arrows mark the actions chosen by the two

agents. Then the update for MM will be

Q(S1, a12, o13) = (1 − αt)Q(S1, a12, o13) + αt[r + γ ∗ 0]

since the minimax value ofS2 is 0. However, the update forSARSA is

Q(S1, a12, o13) = (1 − αt)Q(S1, a12, o13) + αt[r + γ ∗ 10].

The zero values in tableS2 may be due to insufficient exploration or may be their true values. Hence,
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Figure 4: Games are played byλMMi againstsMMi for various values ofi. The percentages of
wins (averaged over 10 runs) by the former for variousi are plotted.

the information that there is something interesting inS2 is backpropagated more expeditiously in

sMM than in MM, but this happens after an initial lull when both MM and sMM are in the exploratory

state and are equally ignorant of the domain. Later with moreexploration, we expect MM to catch

up (in figure 2) as learning continues. It is noteworthy that the same argument is inapplicable in

ordinary Q-learning versusSARSA for a single agent learning scenario. Consider the single columns

(o13 for S1 and o22 for S2) in figure 5. The value 10 will be used in the Q-update for both the

algorithms, assuming same actions are selected in both cases. Hence, the speedup achieved by sMM

over MM is crucially dependent on the pessimistic characterof minimax strategy itself. We might not

expect a comparable speedup in Nash-SARSA, and experimental verification of this intuition would be

interesting.
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Figure 5: A sample state transition showing action-selection, reward and action values for the row
agent.

6 Experiments in a general-sum domain

We note that the minimax-Q algorithm is applicable in general-sum domains as well, where the ra-

tionale of the assumption of minimizing policy of the opponent is to guarantee a minimum security

level to the learner, instead of maximizing the reward of theopponent itself as in the zero-sum in-

terpretation. TheSARSA and Q(λ) versions will still work in such domains. For the purpose of

experimentation, we introduce a general-sum problem that we call “tightly coupled navigation.”

This problem is a4 × 3 grid world as shown in figure 6. The values in the lower left corner of

each cell in figure 6 is the reward to agent 1 for reaching the state corresponding to that cell. Similarly

the values in the upper right corner are those for agent 2. Therewards in this domain are state-based,

i.e. the reward corresponding to a cell is received if the agents reach or remain in that cell. Here the

agents are tightly coupled as they must always occupy the same cell and the next position and the

payoff received by the agents are determined by both of theiractions in every step. Contrast this with
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Figure 6: The tightly coupled navigation domain.

the “soccer game” domain, which is less tightly coupled since the position and the payoff received by

an agent is dependent on the other agent’s action only when agents are in close proximity. Here each

agent has three available actions in each state, viz. up, down, right. However, since they are coupled,

they can move only when they choose the same action; otherwise they remain in the same state. The

starting and the absorbing states have been shown in the figure 6. When the agents reach the goal

state, each receives the reward 20 and without making any update in this iteration, the game restarts

with the agents reshifted to the start-state and updates begin once again.

A realistic scenario for this domain is two men carrying a piece of heavy furniture. The furniture

moves in a given direction if both the agents move in that direction; otherwise the furniture does not

move (falls off from their hands). It should be assumed that they are not coordinating their moves by

explicit communication, but are only observing the moves and the subsequent situation of the other.

There may be different paths that the agents wish to follow toreach their common goal. However,

since they are tightly coupled, they must strike a compromise and find an intermediate path that both
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can be maximally satisfied with, given the coupling.
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Figure 7: Mean RMS deviation plots of minimax-SARSA (solid) and ordinary minimax-Q for proba-
bility of reward-generation = 0.

We have symmetrically trained two minimax-Q and two minimax-SARSA agents in this domain.

The exploration probabilities for the agents in each iteration was 0.2, the same as in the soccer domain.

We varied the probability of reward-generation in each iteration from 0 to 0.5 to 1.0, where 0 stands

for the case where rewards are generated only when the agentsreach the goal state and a probability

of 1.0 stands for a reward generated at each step. We wanted tostudy the effect of infrequent rewards,

which is a realistic scenario in most practical domains, on the convergence of our algorithms. We

expected the convergence rates to fall with more and more infrequent rewards. In order to study the

convergence, the exactminimax action values were computed off-line and an averageRMS deviation

of the learned action values every 1000 training-iterations were plotted. The trainings lasted a total of

10,000 iterations.

From figures 7, 8 and 9, we can see that the minimax-SARSA algorithm always approaches min-

imax values faster than the ordinary minimax-Q algorithm. The errors in all the cases decrease
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Figure 8: Mean RMS deviation plots of minimax-SARSA (solid) and ordinary minimax-Q for proba-
bility of reward-generation = 0.5.

monotonically which suggests that both the algorithms willeventually converge. As expected, the

error-levels fall with increasing probability of reward-generation.

7 Conclusion and future work

We conclude that both theSARSAandQ(λ) versions of minimax-Q learn better policies early on, than

Littman’s minimax-Q algorithm, and more so for theQ(λ) algorithm. Though this latter algorithm

works well, we are not aware of the theoretical convergence properties of this method. Exploring

these properties is one open area. We also note that a combination of minimax-SARSA andQ(λ) to

form what could be called minimax-SARSA(λ), would probably be more efficient than either of the

two, by naturally combining their disjoint areas of expediency, seen in the plots in figures 2 and 3.

We plan to conduct more experiments with all these hybrid algorithms.
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Figure 9: Mean RMS deviation plots of minimax-SARSA (solid) and ordinary minimax-Q for proba-
bility of reward-generation = 1.0.
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