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Abstract

Coalition formation has been a very active area of re-
search in multiagent systems. Most of this research has
concentrated on decentralized procedures that allow self-
interested agents to negotiate the formation of coalitions
and division of coalition payoffs. A different line of research
has addressed the problem of finding the optimal division of
agents into coalitions such that the sum total of the the pay-
offs to all the coalitions is maximized [4, 8]. This is the op-
timal coalition structure identification problem. Determin-
istic search algorithms have been proposed and evaluated
under the assumption that the performance of a coalition
is independent of other coalitions. We use an order-based
genetic algorithm (OBGA) as a stochastic search process
to identify the optimal coalition structure. We compare the
performance of the OBGA with a representative determin-
istic algorithm presented in literature. Though the OBGA
has no performance guarantees, it is found to dominate the
deterministic algorithm in a significant number of problem
settings. Additional advantage of the OBGA is its scala-
bility to larger problem sizes and to problems where per-
formance of a coalition depends on other coalitions in the
environment.

1 Introduction

A key area of interest to multiagent researchers is the
formation of groups by self-interested agents. Agents may
want to “join hands” to take advantage of complementary
capabilities, resources, and expertise. From an individual
agent’s point of view the incentive for joining a coalition is
to increase the payoff that it can receive. As such, the coali-
tion formation process has received considerable attention
in the multiagent systems research [3, 6, 9, 11].

From the overall system designers point of view, how-
ever, the total payoff received by all coalitions in the system
may be of interest. This total payoff, for example, may be
correlated to the level of utilization of system resources.In

such cases, the goal would be to maximize the total pay-
off received by all coalitions which effectively translates to
maximum resource utilization. The system designer then
would be interested in knowing what collection of coali-
tions can generate this maximum payoff. A coalition struc-
ture (CS) is defined as a partition of the agents in a system
into disjoint coalitions. The goal of the system designer is
then to find the optimal coalition structure, i.e., the coalition
structure that can generate the maximal payoff.

Just because a coalition structure can generate maximal
payoff, or alternately, produce optimal resource utilization,
does not mean that this will be realized in practice. Also,
knowing the optimal coalition structure does not solve the
problem of how the agents can be induced to align them-
selves as per the coalitions contained therein. However,
knowing the optimal coalition structure, or some of the best
performing coalition structures, can enable the system de-
signer to providing incentives for agents to group into de-
sirable configurations. In any case, knowledge of the op-
timal coalition structure will allow the system designer to
evaluate the relative effectiveness of the current coalition
structure in the system.

For reasons cited above, and others, some multiagent re-
searchers have developed and evaluated the performance of
anytime algorithms to search for optimal coalition struc-
tures in characteristic function games (CFGs) [4, 7, 8]. In
CFGs the value of each coalition is given by a characteris-
tic function and the value of a coalition structure is simply
defined as the sum of the values of the coalitions that it con-
tains. The deterministic algorithms developed for searching
for optimal coalition structures are geared towards system-
atically searching the space of CSs to provide a bound on
the value of the optimal CS [8]. There are two basic short-
comings of these algorithms:

1. These algorithms rely on the assumption that the value
of a coalition is independent of other coalitions in the
coalition structure. This is justifiable in CFGs but may
not be valid in a large number of practical scenarios.
In general, how well a group of agents perform is also
dependent on other agent groups in the environment.



2. The algorithms exhaustively search the space of all
possible coalition structures. Since the size of the
space is exponential in the number of agents, these al-
gorithms cannot be used for practical problems. In ad-
dition, to even guarantee a bound on the optimal CS
payoff, it is necessary to evaluate an exponential num-
ber of CSs. Hence, these algorithms are not very useful
either to find the optimal CS or to develop a bound on
its value for all but the smallest problems.

We propose the use of a stochastic search algorithm,
namely an order-based genetic algorithm to search the space
of possible coalition structures for CSs with high payoffs.
The advantages of the OBGA approach are the following:

� It makes no assumption about how a CS payoff is cal-
culated, i.e., it can be used both for CFGs and non-
CFGs.

� It scales up well with increase in the number of agents
and hence the size of the space of coalition structures.

The major shortcoming of the OBGA approach is that it
provides no guarantees about finding the optimal CS, and
that even though it is an anytime algorithm, it cannot specify
any bounds on the value of the optimal CS.

Given this contrasting strengths and limitations, we have
to arrive at a common, justifiable metric for comparing the
performance of the deterministic algorithms listed in Sand-
holm et al. [8] and OBGA algorithms on the optimal CS
searching problem. The metric we propose is the best coali-
tion structure found by the algorithms after evaluating a
given number of coalition structures. This metric is justifi-
able as given an allocation of computational resources, e.g.,
CPU time, we can run both algorithms and observe the best
CS found by them. As both algorithms are anytime algo-
rithms, they can also be interrupted at any time to observe
the best solution found so far. This periodic interruptions
can provide us with snapshots of how the quality of the CSs
generated are improving as a function of search effort. .

2 Searching for coalition structures

A coalition structure consists of all the agents in the en-
vironment grouped into one or more coalitions. The goal of
optimal CS searching algorithms is to find the CS from the
space of all CSs,M , that has the maximum value (this can
be viewed as the payoff this CS can possibly generate). In
characteristic function games the value of a coalition struc-
ture,CS, is given by

V (CS) =

X

S2CS

v

S

;

wherev
S

is the value of the coalitionS. In CFGs the value
of a coalition is assumed to be determined only by the com-
position of the coalition and is independent of other coali-
tions. In general, we will also be interested in situations
where the value of a coalition depends on the other coali-
tions. We will then assume only the presence of a func-
tion V : M ! R, that returns the payoff of any coalition
structure. The search algorithms attempt to find the optimal
coalition structure

CS

�

= arg max

CS2M

V (CS):

The spaceM can be viewed as a partially ordered lattice
where the supremum element is a CS where every coalition
consists of a single element, and the infimum element is the
CS with one grand coalition containing all agents. A CS
X in the lattice is directly above another CS Y if X can be
obtained from Y by splitting one of its coalitions into two
coalitions. Thus X has exactly one more coalition than Y.
This partial order imposes a structure on the lattice such that
we can describe the lattice to haven levels, wheren is the
number of agents. Every CS at theith level contains exactly
i coalitions. Figure 1 shows such a lattice for 4 agents.

2.1 Deterministic CS search algorithm

The deterministic CS search algorithm SPLIT [7]
searches breadth first from the bottom of the lattice. This
algorithm obviously does well if the grand coalition (a CS
with a single coalition of all agents) is the optimal CS. The
performance of this algorithm, as measured by the num-
ber of evaluations required before finding the optimal CS,
degrades as the level of the optimal CS increases. For
CFGs, SPLIT establishes a bound ofn on the optimal CS
(i.e., finds a CS which is not more thann times worse
thanCS�, the optimal coalition structure), after searching
2

n�1 nodes (all nodes in the lowest two levels of the lat-
tice). No such bounds can be specified by SPLIT for non-
CFGs. Though we have experimented only with SPLIT, the
other two search algorithms have corresponding strengths
and weaknesses and the comparisons presented in this pa-
per holds for these algorithms with minor modifications.

2.2 OBGA CS search algorithm

Genetic algorithms (GAs) are a class of stochastic search
algorithms that have been used widely in function optimiza-
tion [5]. GAs have been particularly effective in large-scale
NP-complete combinatorial optimization problems includ-
ing a wide variety of scheduling and routing problems [1].
The optimal CS search problem is a combinatorial opti-
mization problem with an exponential search space. As
long as there is some regularity in the search space, i.e.,
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{1} , {2} , {3,4}     {1} , {4} , {2,3} {2} , {3} , {1,4} {3} , {4} , {1,2}

   {1,2} , {3,4} {1,3} , {2,4}     {1,4} , {2,3}

(4)

(3)

(2)

(1)      {1,2,3,4}

   {1}  {2}  {3} {4}

  {1} , {3} , {2,4}      {2} , {4} , {1,3}

   {1} , {2,3,4}   {2} , {1,3,4}   {3} , {1,2,4}  {4} , {1,2,3}

Figure 1. Coalition structure lattice for 4 agents.

theV function is not arbitrary, the GAs have a potential to
detect that regularity and hence find CSs that perform rel-
atively effectively. As mentioned before, GAs cannot pro-
vide any guarantees of finding the optimal CS or bounding
its value with a given number of evaluations. The search
performed by the GAs on the lattice is determined by the
initial randomly generated population of CSs and theV

function. The search is likely to span several levels at the
same time, and the next CSs to be evaluated are produced
based on the current set of CSs in the GA population.

A simple GA consists of evaluation, selection, and re-
combination routines, where evaluation evaluates current
population members (a CS in our case), selection selects
members repeatedly with replacement and based on their
evaluation to generate a new population, and recombination
constructs new members from the selected members by ex-
changing and modifying their contents [2].

We next discuss the representation used in our OBGA.
We number then agents from0; : : : ; n � 1. We also in-
cluden � 1 markers numbered fromn; : : : ; 2n � 2. The
markers are required to separate the agents into different
coalitions and since the supremum CS containsn coali-
tions, we will needn � 1 markers to represent it. It
would have been more economical to use a single sym-
bol to represent markers. We adopted this larger cardi-
nality representation to use a constant length GA repre-
sentation and for the ease of working with the GALib
package (http://lancet.mit.edu/ga/). Figure 2
shows example GA structures and corresponding CSs. It
is instructive to note that many GA structures map into
the same CS (given a coalition structureCS, at least

{1  7  6  3  8  4  2  5  9 }              {  2  5  7  1  4  3  9  8  6 }     

      GA  Structures

               {{1}{3}{4 2 5}}                            {{2 5}{1 4 3}}

     TA structures

Figure 2. GA population members and the
corresponding coalition structures.

(n � 1)!jCSj!

Q

S2CS

jSj! GA structures map into one
CS). While this representation significantly inflates the GA
search space, such many-to-one mappings alleviate the
problem somewhat and guards against disruptive crossover
by providing non-coding segments or introns [5] (for exam-
ple crossover of segments including only marker symbols
will not disrupt any building blocks).

In a simple GA the prevalent crossover operators used
such as single, two-point, and uniform crossovers performs
a position based exchange of structural components be-
tween the two selected parents. Such an exchange will
produce unacceptable CSs as shown in Figure 3. We need
crossover and mutation operators that guarantees that ev-
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Crossover point

9  3  2  8  6  1  7  5  4 Parent 1 {3 2}{1}{5 4}

4  2  1  7  6  8  9  5  3

Cross over point

Parent 2 {4 2 1}{5 3}

9  3  2  8  6  1  9  5  3      Offspring 1 

4  2  1  7  6  8  7  5  4      Offspring 2 

{3 2}{1}{5 3}

{4 2 1}{5 4}

Task Allocation

Task Allocation

Wrong task allocations :

Same task is allocated to multiple agents. In offspring 1

task # 3 is allocated to both first and third agents. In

offspring 2 task # 4 is allocated to both the agents.

Figure 3. Problem of simple two-point
crossover with coalition structures.

ery agent is represented exactly once in each individual
CS. Of the operators available in the GA literature that
provides such a guarantee, we used the Edge Recombina-
tion Operator [10]. This operator belongs to the class of
order-preserving crossover operators and is used primarily
in combinatorial optimization problems like the traveling
salesman problem. Though order-preservation is not a re-
quirement in the CS search problem, the edge recombina-
tion operator fulfills our requirement of producing struc-
tures which contain all the agents without replication.

3 Experiments

We now report the results from our comparative evalua-
tion of the OBGA and SPLIT algorithms on randomly gen-
erated optimal CS search problems. We defined a suite of
problems by analyzing the CS search space. Let us recon-
sider Figure 1. The optimal solution can reside at any of the
n levels. We constructed parameterizedV functions such
that we can generate problems with the optimal solution re-
siding at our chosen level. The data we will be presenting
in this section was generated by experimenting with twoV -
functions in particular. In one of these,V

1

, the value of
a coalition was independent of the other coalitions. In the
other,V

2

, this was not the case. We now present each of
these functions (we assume that the agents are numbered 1
throughn):

V

1

(CS) = C �

X

S2CS

(weight(jSj)+

X

a2S

(a�min

b

S); (1)

where

weight(x) = x

2

; if 0 < x < K;

= (x � 2K)

2

; if K � x � 2 �K;

= 0; otherwise

In the above,K is the desired size of each coalition in the
optimal CS that we can vary to place the optimal CS at dif-
ferent levels. In Equation 1 the second term inside the sum-
mation causes the optimal CS to consist of consecutively
numbered agents. For example, with 10 agents andK set to
2,CS� =ff1 2 3 4 5gf6 7 8 9 10gg.

V

2

(CS) = C�

X

S2CS

(weight(jSj)+distan
e(S;CS�S));

(2)
where

distan
e(S;C) = min

X2C

j

X

a2S

a�

X

b2X

bj:

Equation 2 includes a term where the value of a coalition
becomes dependent on the membership of the other coali-
tions.

In either case, the OBGA has noa priori notion of the
actual function it is optimizing. Neither does it make any
assumptions about the class of functions it is working with.
We chose these particular functions to have some regularity
in the function space that can be observed in practice. For
example, in real problems often groups of a certain size are
more stable, flexible, and responsive to be effective in the
marketplace.

We first experimented with 10 agents and varying de-
sired group size from 2 (optimal CS at level 5 of the lattice)
to 5 (optimal CS at level 2 of the lattice). OBGA parame-
ters included a population size of 50, crossover rate of 0.8,
mutation rate of 0.1, and number of generations = 1000.
The summary results of running OBGA and SPLIT are pre-
sented in Table 1. Quite clearly, as the level number of the
optimal increases, SPLIT takes exponentially more evalua-
tions to find the optimal structures. The OBGA results are
averaged over 5 random population initializations and there
appears to be no significant correlation between the level
of optimal CS and the time taken to find it. The perfor-
mance of the algorithms differ modestly from dependent to
independent coalitions. We should still remember that with
dependent coalitions, SPLIT loses the bound guarantees it
can provide after searching the bottom two levels in the in-
dependent coalitions case.

The performance of the OBGA did not vary much for the
different desired coalition size (except for the group sizeof
4). This can be explained by the fact that initial random
samplings by the GA population allows the identification of
regular patterns. For example, given a desired groups size
of n, CSs containing much larger or much smaller groups
would get poor evaluation. This allows the GA to quickly
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Desired group size Independent coalitions Coalitions with dependencies
SPLIT OBGA SPLIT OBGA

2 908200 3500 908200 3500
3 60000 2500 122500 3500
4 1300 14500 4000 9500
5 100 5000 100 11000

Table 1. Average number of evaluations taken by SPLIT and OBG A to find the optimal CSs for different
optimal coalition sizes. Number of agents is 10. Results are presented for both when the value of a
coalition depend on other coalitions and when it does not.

identify groups of the right size. More time is spent on find-
ing the correct group compositions once CSs with the right
group sizes are identified.

In addition, it was interesting to note that there was little
difference in performance of the OBGA between the func-
tion V

1

(corresponds to a CFG) andV
2

(a non-CFG). As
mentioned above the OBGA is oblivious to the CFG re-
quirement. It should be mentioned that the OBGA is ex-
pected to perform equivalently on other function classes as
long as the evaluation function chosen is not arbitrary or
particularly ill-behaved, e.g., a needle-in-a-haystack func-
tion.

We also experimented with larger problem sizes with
OBGA by increasing the number of agents. We experi-
mented with up to 50 agents. Larger problem sizes could
not be run with the SPLIT algorithm because of exponen-
tially increasing computational cost. Results from these
experiments are presented in Figures 4 and 5. It is clear
that only a modest increase in computational resources is
required by the OBGA to handle this larger problem sce-
narios. Optimal solutions are found within about 5000 eval-
uations in most cases. This is particularly encouraging be-
cause we can now attempt to solve the optimal coalition
structure recognition problem for realistic problem sizes.

4 Conclusions

In this paper we have presented a stochastic search ap-
proach for searching optimal coalition structures. We iden-
tify some of the limitations of deterministic search algo-
rithms reported in literature. These include assumption
of independence of coalition values and the exponential
growth in computational requirements. Stochastic search
algorithms like the OBGA algorithm we have adapted, how-
ever, provide no performance guarantees or bound on the
optimal coalition value. We argue that given a fixed alloca-
tion of computational resources we would also be keenly
interested in finding the best coalition structure. In this
regards, the stochastic algorithms have a distinct edge on

the deterministic exhaustive algorithms. The OBGA algo-
rithm, for example, can track any pattern or regularity in the
CS evaluation functions and quickly identify good coalition
structures.

In the experiments, for a large number of problem sce-
narios (except when the optimal CS was present in the bot-
tom two levels of the lattice of CSs), the OBGA algorithm
took an order of magnitude less computational effort to
identify the optimal CS. In addition, the scale up of com-
putational effort was found to be linear in the input size,
i.e., the number of agents.

We plan to compare OBGA with heuristic search algo-
rithms like greedy search or best-first search to search the
lattice structure. Like OBGA, these algorithms would not
be able to provide any bounds, but may scale up well with
problem size.

We also plan to investigate the performance of OBGA
with a number of different value functions with different
regularities and shapes. This will help us understand the
strengths and weaknesses of the OBGA algorithm in finding
the optimal coalition structure.

We believe that other stochastic algorithms like simu-
lated annealing will also fare competitively with the OBGA
on the optimal coalition structure recognition problem.
These algorithms bias their search of the space based on
limited sampling, and can escape local minima in the search
space because of their stochastic nature.
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