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ABSTRACTMulti-agent learning literature has looked at iterated two-player games to develop me
hanisms that allow agents tolearn to 
onverge on Nash Equilibrium strategy pro�les.Su
h equilibrium 
on�guration implies that there is no mo-tivation for one player to 
hange its strategy if the otherdoes not. Often, in general sum games, a higher payo� 
anbe obtained by both players if one 
hooses not to respondoptimally to the other player. By developing mutual trust,agents 
an avoid iterated best responses that will lead to alesser payo� Nash Equilibrium. In this paper we 
onsider1-level agents (modelers) who sele
t a
tions based on ex-pe
ted utility 
onsidering probability distributions over thea
tions of the opponent(s). We show that in 
ertain situa-tions, su
h sto
hasti
ally-greedy agents 
an perform better(by developing mutually trusting behavior) than those thatexpli
itly attempt to 
onverge to Nash Equilibrium. Wealso experiment with an interesting a
tion revelation strat-egy that 
an give the revealer better payo� on 
onvergen
ethan a non-revealing approa
h. By revealing, the revealer
an 
onvin
e or en
ourage other agent to agree to a moretrusted equilibrium.
1. INTRODUCTIONReinfor
ement learning te
hniques with performan
e and
onvergen
e guarantees have been developed for isolated sin-gle agents. The underlying assumption is that the envi-ronment is stationary. Multi-agent or 
on
urrent learning,however, violates this assumption. As a result, the standardreinfor
ement learning te
hniques (like Q-learning) are notguaranteed to 
onverge in a multi-agent environment. Thedesired 
onvergen
e in multi-agent systems is on an equilib-rium strategy-pro�le (
olle
tion of strategies of the agents)rather than optimal strategies for an individual agent.The sto
hasti
-game (or Markov Games) framework, ageneralization of Markov De
ision Pro
esses for multipleplayers, has been used to model learning by agents in vari-ous domains [2, 3, 4℄. In [2℄, two basi
 types of multi-agent
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learners have been studied. The learners who do not modelother agents, e�e
tively 
onsidering them as passive parts ofa non-stationary environment, are 
alled `independent learn-ers' (ILs). We term these 0-level agents. In 
ontrast tosu
h agents, those that observe others' a
tions and rewardsand use these expli
itly in modeling them, are 
alled `joint-a
tion learners' (JALs). We 
all these 1-level agents. Theo-rem 1 in [2℄ 
laims that both 0 and 1-level agents 
onvergeto equilibria in purely 
ooperative domains or 
oordinationgames. But their work is not extendible to general domainsor general-sum games. The authors in [3℄ have adopted a
omplete-information general-sum game approa
h and pro-vide a learning s
heme that allows learners to 
onverge to amixed-strategy Nash Equilibrium in the limit.Nash Equilibrium, however, does not guarantee that agentswill obtain the best possible payo�s, i.e., Nash Equilibriumdoes not ensure Pareto-optimal solutions. Some non-NashEquilibrium a
tion 
ombinations may yield better payo�sfor both agents, whi
h may be rea
hed if the agents lookahead while sele
ting a
tions [1℄. Su
h desirable non-myopi

hoi
es are preferred by both agents. While playing best re-sponse to other agents' 
urrent poli
y will lead to a deviationfrom su
h desirable solutions, restraint or mutual trust 
anenable players to sti
k to su
h a
tion 
ombinations.In this paper we evaluate the possibility of 
on
urrentlearners 
onverging to su
h desirable non-myopi
 a
tion 
hoi
es.While Hu and Wellman's approa
h is guaranteed to 
on-verge to Nash Equilibrium strategy pro�les [3℄ under 
ertain
onditions, independent, or even ordinary 1-level Q-learnershave no su
h guarantees. In our previous work, we haveobserved that 0-level Q-learners often outperformed higher-level Q-learners in the long run even though their learningrate is slower [7℄. In this paper we show that greedy modelers
an, in their turn, outperform equilibrium seeking modelersin terms of the rewards re
eived. We also investigate an in-teresting variation of sequential play with a
tion revelation.The motivation behind this work is to determine whetheragents 
an learn to make desirable non-myopi
 
hoi
es by re-vealing the a
tions they take to the other agents. By a
tionrevelation, we mean that an agent (say A) takes a parti
u-lar a
tion and 
ommuni
ates its a
tion to the other agent(s).The other agent(s) take their a
tion with full knowledge ofagent A's a
tion. We, in the 
urrent work, assume thatagents are truthful about their a
tion revelation. We de-sign a strategy where ea
h agent is given an opportunity toreveal its a
tion at every alternate iteration (a game 
on-sists of multiple iterations) of the game whi
h we refer to asAlternate revelation 
hoi
e. Whether the agent 
hooses to



reveal its a
tion depends on its previous experien
e (the pay-o� it re
eived) when it 
hose to reveal/not reveal its a
tion.Another strategy that we designed and experimented withis the Simultaneous revelation 
hoi
e where both agents aregiven an opportunity to reveal their a
tions at every itera-tion of the game. As in the Alternate revelation 
hoi
e, anagent's 
hoi
e of a
tion revelation is based on its previousexperien
e (the payo�s re
eived) when it 
hose to reveal/notreveal its a
tion. We will explain both the strategies in detaillater. We present some interesting results in se
tion 4 whi
hseem to indi
ate that, under 
ertain game matrix 
on�gu-rations (game matri
es are dis
ussed in se
tion 2), agentslearn to 
onverge to a more desirable Pareto-optimal solu-tion when they learn to reveal their a
tions. On the 
ontrary,they 
onverge to a myopi
 Nash equilibrium when they donot adopt the revelation strategies dis
ussed above. How-ever, we still need to formalize our approa
h and investigatethe problem in greater depth before we 
an determine thematrix 
on�gurations under whi
h su
h results will be ob-tained. The problem is exa
erbated given that the strategiesare not guaranteed to 
onverge in a multi-agent environ-ment.
2. LEARNING IN REPEATED GAMESIn this se
tion, we introdu
e some de�nitions to formulatea framework for 
on
urrent learning.Definition 1. A Markov De
ision Pro
ess (MDP) is aquadruple fS;A; T; Rg, where S is the set of states, A is theset of a
tions, T is the transition fun
tion, T : S � A !PD(S), PD being a probability distribution, and R is thereward fun
tion, R : S �A!R.Amulti-agent reinfor
ement-learning task 
an be looked uponas an extended MDP, with S spe
ifying the joint-state of theagents, A being the joint-a
tions of the agents, (A1 �A2 �: : : An where Ai is the set of a
tions available to the ithagent), T as the joint state-transition fun
tion, and the re-ward fun
tion is rede�ned as R : S�A!Rn. The fun
tionsT and R are usually unknown, ne
essitating learning. Thegoal of the ith agent is to �nd a strategy �i that maximizesits expe
ted sum of dis
ounted rewards,v(s; �i) = 1Xt=0 
tE(ritj�i; ��i; s0 = s)where s0 is the initial joint-state, rit is the reward of the ithagent at time t, 
 2 [0; 1) is the dis
ount fa
tor, and ��iis the strategy-pro�le of i's opponents. In [3℄ the ith agentlearns ��i simultaneously, and opts for the best response toit. Though myopi
ally this is the best an agent 
an do, itmay miss opportunities for re
eiving higher payo�s as in thewell-known Prisoner's Dilemma problem.Definition 2. A bimatrix game is given by a pair of ma-tri
es, (M1;M2), (ea
h of size jA1j � jA2j) for a two-agentgame, where the payo� of the ith agent for the joint a
-tion (a1; a2) is given by the entry Mi(a1; a2); 8(a1; a2) 2A1 �A2; i = 1; 2.Ea
h stage of an extended-MDP for two agents (it 
an beextended to n agents using n-dimensional tables instead ofmatri
es), 
an be looked upon as a bimatrix game. In thispaper we 
onsider general-sum games where the individual

payo�s of the agents for any joint-a
tion are un
orrelated.We now de�ne Nash equilibrium for su
h games.Definition 3. A pure-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of a
tions (a�1; a�2) su
hthat M1(a�1; a�2) �M1(a1; a�2) 8a1 2 A1M2(a�1; a�2) �M2(a�1; a2) 8a2 2 A2In a Nash equilibrium the a
tion 
hosen by ea
h player isthe best response to the opponent's 
urrent strategy and noplayer in this game has any in
entive for unilateral deviationfrom its 
urrent strategy. A general-sum bimatrix game maynot have any pure-strategy Nash Equilibrium.Definition 4. A mixed-strategy Nash Equilibrium for abimatrix game (M1;M2) is a pair of probability ve
tors (��1 ; ��2 )su
h that ��1 0M1��2 � �10M1��2 8�1 2 PD(A1)��1 0M2��2 � ��1 0M2�2 8�2 2 PD(A2)where PD(Ai) is the set of probability-distributions over thea
tion spa
e of the ith agent.A signi�
ant property of mixed-strategy Nash Equilibria, isthat there always exists at least one su
h equilibrium pro�lefor an arbitrary �nite bimatrix game [8℄. Given su
h a bima-trix game (M1;M2), the mixed-strategy Nash Equilibrium,(��1 ; ��2), 
an be 
omputed using a quadrati
 programmingapproa
h as outlined in [6℄.We are interested in a non-myopi
 equilibrium where aplayer not only 
onsiders its best response to 
urrent play-ing trends, but also future possible retaliation by the otherplayer. For example, 
onsider the two players playing �A1and �B1 respe
tively and the �rst player getting �A1 MA�B1as a result. While 
onsidering another strategy �A2 , A now
onsiders not only if �A2 MA�B1 > �A1 MA�B1 , but also if�A2 MA�B1 > �A2 MA�B2 , where �B2 is Bs best response to �A2(this equilibrium 
on
ept is similar in motivation to the non-myopi
 equilibrium in the Theory of Moves approa
h [1℄).Of 
ourse, it is diÆ
ult to estimate the other player's bestresponse, but this 
an be approximated based on past playof the opponent.
3. Q-LEARNINGA general, single-agent reinfor
ement learning task is anMDP, where the state transition and reward fun
tions T andR are unknown. A simple, model-free and on-line te
hniquefor reinfor
ement learning is Q-learning [11℄. In a statelessdomain, as is the 
ase with single-stage games studied inthis paper, an independent Q-learner will have Q-values forea
h a
tion a, Q(a), and update them based on rewards rre
eived from taking a
tion a as follows:Q(a) Q(a) + �(r �Q(a))where � is the learning-rate. This iteration has been provedto 
onverge to optimal Q-values, for a parti
ular stru
tureof �, but independent of any parti
ular exploration strat-egy provided it satis�es some general requirements. Whena number of independent learners apply this algorithm, the




onvergen
e-guarantee does not hold due to the non-stationarityof the environment. However, su
h straightforward appli-
ations of Q-learning in multi-agent systems have a
hievedsu

ess in the past [2, 9, 10, 12℄. Our 1-level Q-learners learnQ-values, Q(a; b), for ea
h possible joint-a
tion (a; b), usingits observation of the a
tions of the other agents, but solelyits own reward for joint-a
tion. Thus the updation-rule usedis Q(a; b) Q(a; b) + �(r �Q(a; b))To allow these 1-level Q-learning agents to in
reasinglyexploit their learned strategies, we use the Boltzmann ex-ploration strategy, whi
h slowly in
reases the exploitationprobability. In this exploration s
heme, the a
tion a is se-le
ted with probability eE(Q(a))=TPa0 eE(Q(a0))=T ;where E(a) =Pb pbQ(a; b), pb being 
omputed as the relative-frequen
y measure from B's a
tion history. Thus we 
allthese agents \expe
ted utility based probabilisti
 learners"or (EUPs). The temperature parameter T is started at ahigh value (
ausing more exploration) and then de
reasedover time, e.g., by multiplying with a de
ay fa
tor, to in-
rease the exploitation probability.We have also experimented with an interesting variation ofsequential play with a
tion revelation. We allow one playerto reveal or announ
e its move at ea
h iteration of the game.The other player 
an 
hoose its move based on 
ompleteknowledge of the move made by its opponent. It might stillde
ide to explore its a
tions instead of playing best responsein order to thoroughly evaluate its options. a
tions. In therevealing version of the game, the players keep not only anestimate of pb, the frequen
y distribution of its opponent'smoves, but also the 
orresponding 
onditional frequen
y dis-tribution, pbja, i.e., the likelihood that the opponent is goingto play its move b if the revealer plays b. Let us 
onsider thatea
h agent has a set of n a
tions to 
hoose from. The EUPshave to keep an estimate of ea
h of the n a
tions. However,in the revealing s
enario, ea
h agent 
an reveal any of itsn a
tions or may 
hoose not to reveal its a
tion. So, forea
h agent, we have to keep an estimate of 2n a
tions (anestimate of an a
tion when it reveals it and an estimate ofthe same a
tion when it does not reveal it). In the followingdis
ussion, ar refers to a revealed a
tion and anr refers to anon-revealed a
tion. The Q matrix has entries for all a
tionpairs Q(i; j) where i 2 [1; n℄ and j 2 [1; n℄. Also, ar and anr
an take values between 1 and n (in
luding 1 and n). For-mally, in the exploration s
heme, any a
tion a belonging tothe set of non-revealed a
tions is sele
ted with probabilityeE(Q(a))=TPanr eE(Q(anr))=T +Par eE0(Q(ar))=T ;where E(anr) =Pb pbQ(anr; b) andE0(ar) =Pb pbjarQ(ar; b)and any a
tion a0 belonging to the set of revealed a
tions issele
ted with probabilityeE0(Q(a0))=TPanr eE(Q(anr))=T +Par eE0(Q(ar))=T :Note that a and a0 
an take any value between 1 and n(in
luding 1 and n).We explored two variations of the revelation strategy.

� Alternate revelation 
hoi
e: In this strategy, ea
hagent is given an opportunity to reveal its a
tion atevery alternate iteration of the game (Any game has1000 iterations in all our experiments).� Simultaneous revelation 
hoi
e: In this strategy,both the agents are given an opportunity to revealtheir a
tions at every iteration of the game. If bothplayers agree on revealing, we randomly (with equalprobability) 
hoose between the two players. Other-wise, the player who learns to reveal is allowed to doso, and the other player 
hooses its a
tion based on
omplete knowledge of the move made by its oppo-nent. The primary di�eren
e between the two strate-gies is that Simultaneous revelation 
hoi
e determinesthe revealer at every iteration of the game whereas Al-ternate revelation 
hoi
e has a predetermined revealerand determines whether this agent wants to reveal itsa
tion or not. The advantage of Simultaneous revela-tion 
hoi
e over Alternate revelation 
hoi
e is as fol-lows: Supposing one agent (A) learns to reveal its a
-tion, whereas the other (B) does not. Also, when Areveals its a
tion, payo� for both A and B is higherthan when B does not reveal its a
tion (otherwise Awill have no in
entive to reveal its a
tion). Given this,in Alternate revelation 
hoi
e, approximately 50% ofthe time, B will be given the opportunity to reveal itsa
tion (given that B has learnt not to reveal, it willnot use the opportunity) whereas in Simultaneous rev-elation 
hoi
e, A will always get the opportunity toreveal its a
tion (sin
e B will refrain from revealing)and thus, the average payo� for both agents will behigher in Simultaneous revelation 
hoi
e.
4. EXPERIMENTSOur experimental work uses four game matri
es (�gure 1, 3, 5and 7) to highlight how the agents learn to in
rease their in-dividual rewards by revealing their a
tions. We experimentwith 3 � 3 game matri
es. Ea
h agent has three a
tions to
hoose from, where ais are the a
tions of agent A and bisthose of agent B. For any a
tion 
ombination, the top-rightvalue in the 
orresponding matrix 
ell is the payo� to agentB and the bottom-left value is the payo� to agent A. Theshaded entry in ea
h matrix 
orresponds to the Nash Equi-librium strategy-pro�le. The a
tion-pro�le that the agentsprefer (greedy) and the desirable non-myopi
 solutions arealso marked in ea
h game-matrix. Our experiments are de-signed to evaluate the EUPs with no revelation, EUPs withAlternate revelation 
hoi
e and EUPs with Simultaneousrevelation 
hoi
e.
4.1 Choice of MatricesWe use the four matri
es to demonstrate the followingresults:� Matrix 1 (see �gure 1) is used to demonstrate howthe two agents learn to 
hoose the Nash Equilibriumand not the Pareto-optimal solution irrespe
tive of thestrategy 
hosen.� Matrix 2 (see �gure 3) is used to demonstrate howthe two agents learn to 
hoose the desirable Nash Equi-librium (whi
h in
identally is the Pareto-optimal solu-tion) irrespe
tive of the strategy 
hosen.



� Matrix 3 (see �gure 5) is used to demonstrate how theagents learn to 
hoose the desirable Nash Equilibrium(whi
h in
identally is the Pareto-optimal solution) us-ing Alternate revelation 
hoi
e and Simultaneous rev-elation 
hoi
e whereas EUPs fail to rea
h the desiredsolution.� Matrix 4 (see �gure 7) is used to demonstrate howSimultaneous revelation 
hoi
e outperforms Alternaterevelation 
hoi
e whi
h, in turn, outperforms EUPs.
4.2 Experiments with Matrix 1The matrix in �gure 1 has a single pure Nash Equilibriumgiven by the a
tion-pro�le ha3; b3i giving a payo� of 5 toboth agents. The desirable solution (Pareto-optimal), how-ever, is for the a
tion-
ombination ha1; b1i giving a payo�of 10 to both agents. We used two EUPs using the aboveQ-learning algorithm, learning for 1000 iterations and using0.99 as the temperature de
ay fa
tor starting at T = 10. Theprobabilities of adopting joint-a
tions ha1; b1i and ha3; b3ias measured by frequen
ies were re
orded every 100 inter-a
tions averaged over the last 100 intera
tions. The valuesin the �gures were averaged over 10 runs, and these proba-bilities are plotted in �gure 2 (left). In this 
ase, the EUPs
onverge to the Nash Equilibrium in most of the runs eventhough the payo� is less than the desirable payo�. This isbe
ause the payo� matrix is 
onstru
ted su
h that a3 is thebest response (a
tually in this example, a3 and b3 are alsothe agents' dominant strategies) of agent A irrespe
tive ofB's 
hoi
e and b3 is the best response of agent B irrespe
tiveof A's 
hoi
e.We a
hieved similar results when we in
orporated Alter-nate revelation strategy and Simultaneous revelation strat-egy in our agents. The probabilities of adopting joint-a
tionsha1; b1i and ha3; b3i are plotted in �gure 2 (middle and right).
4.3 Experiments with Matrix 2The matrix in �gure 3 has both ha1; b1i and ha3; b3i aspure Nash Equilibria. ha1; b1i is also the Pareto-optimal so-lution. The EUPs learn to adopt the desirable a
tion 
ombi-nation ha1; b1i in most runs as shown in the probability plotin �gure 4 (left). A similar result is obtained in both Alter-nate and Simultaneous revelation. The probability plots areshown in �gure 4 (middle and right).
4.4 Experiments with Matrix 3The matrix in �gure 5 has two pure Nash Equilibria givenby the a
tion-pro�le ha3; b3i giving a payo� of 5 to bothagents and the a
tion-pro�le ha1; b1i giving a payo� of 10to both agents. The desirable solution, however, is for thea
tion-
ombination ha1; b1i giving a payo� of 10 to bothagents. In this 
ase, the EUPs 
onverge to the undesirableNash Equilibrium in most of the runs even though the payo�is less than the desirable payo�. This is be
ause the payo�matrix is 
onstru
ted su
h that a3 is the best response (a
-tually in this example, average payo�s for a
tions a3 and b3are higher than a
tions a1 and b1) of agent A irrespe
tive ofB's 
hoi
e and b3 is the best response of agent B irrespe
-tive of A's 
hoi
e. The probabilities of adopting joint-a
tionsha1; b1i and ha3; b3i are plotted in �gure 6 (left).The quadrati
 programming approa
h [3℄ produ
ed a mixedstrategy (probability distribution) of [0; 0; 1℄ and [0; 0; 1℄ forthe agents A and B respe
tively. This 
orresponds to se-le
ting the ha3; b3i a
tion 
ombination. Thus, our EUPs

learn almost the same strategy as the mixed-strategy learn-ers seeking Nash Equilibrium.In both Alternate and Simultaneous revelation s
heme,the agents learn that their best response is to sele
t a
tion1 when the other agent sele
ts a
tion 1 as shown in �gure 6(middle and right). When agent A reveals a
tion 1, agent B(see �gure 5) will have higher probability of 
hoosing a
tion1 and vi
e versa.
4.5 Experiments with Matrix 4In the game matrix in �gure 7, ha3; b3i is the only pureNash Equilibrium. However, ha1; b1i is the desirable solu-tion. From �gure 8 (left) we 
an see that the EUPs learn tosele
t ha3; b3i (the Nash Equilibrium solution).The pro�le learned by 1-level mixed strategy agent for thematrix in �gure 7 (left) is [0:09; 0; 0:91℄ and [0:09; 0; 0:91℄ forA and B respe
tively. This gives an expe
ted reward of 5.45to ea
h of the mixed-strategy equilibrium learners, whereasour EUPs re
eive expe
ted reward of 5.0 for sele
tion of thejoint-a
tion ha1; b1i alone.In the Alternate revelation s
heme/strategy, the agentstake a
tions ha1; b1i and ha3; b3i with almost equal proba-bility (see �gure 8 (middle)). Thus, the expe
ted reward forthe agents is more when they reveal their a
tion than whenthey do not do so (EUPs).Finally, in the Simultaneous revelation s
heme/strategy,the agents 
hoose the a
tion-pro�le ha1; b1i in most of theruns (see �gure 8 (right)). Thus, the agents learn to 
hoosethe desirable a
tion-pair 
ombination in this s
heme/strategy.In the Alternate revelation s
heme, ea
h agent is givena 
han
e to reveal irrespe
tive of whether it has learnt toreveal or not. In the above experiments using revelations
hemes, A learns not to reveal its a
tion (whenever A re-veals a
tion 1, B exploits A by taking a
tion 3) whereas Bhas learnt to reveal its a
tion (a
tion 1). In every alternateiteration (whenever B gets the 
han
e to reveal) B reveals itsa
tion (a
tion 1) and A makes its 
hoi
e of a
tion (a
tion1 with highest probability) based on that. However, dur-ing A's 
han
e to reveal, A does not reveal its a
tion (playsa
tion 3) and hen
e the agents always 
hoose a
tion-pairha3; b3i. So, the agents 
hoose a
tion-pair ha1; b1i wheneverB's turn for revelation 
omes and a
tion-pair ha3; b3i when-ever A's turn for revelation 
omes.In the Simultaneous revelation s
heme, B (having learntto reveal) always reveals its a
tion (a
tion 1) and hen
e, Atakes its best a
tion (a
tion 1 with highest probability) giventhat B has taken a
tion 1. A has not learnt to reveal andhen
e never seeks to do so. Thus, both agents take a
tion 1and rea
h the desirable solution.The question of mutual trust 
an be highlighted in the ma-trix in �gure 7. If a 
ombination of ha1; b1i is being played,agent B has the in
entive to 
hange its a
tion from b1 to b3to in
rease its payo� from 10 to 11. When it makes su
h a
hange, A's optimal response would be to 
hange from a1 toa3 to in
rease its payo� from 4 to 5. Thus, in their haste torespond optimally to the 
urrent situation, both agents 
on-verge to an equilibrium whi
h pays them half of what they
ould have got if they had showed restraint. Ea
h of ourEUPs (in the simultaneous revelation s
heme), on the otherhand, trusts the other's probability-distribution over the a
-tions (given that one of them reveals information about itsa
tion sele
tion) and sele
ts its a
tion sto
hasti
ally basedon that distribution. Thus they progressively tend towards
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Figure 1: Game matrix where a3 and b3 are individually preferable to the agents, also only ha3; b3i is the NashEquilibrium.

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y 

of
 a

do
pt

in
g 

a 
jo

in
t a

ct
io

n

Number of Iterations

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y 

of
 a

do
pt

in
g 

a 
jo

in
t a

ct
io

n

Number of Iterations

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y 

of
 a

do
pt

in
g 

a 
jo

in
t a

ct
io

n

Number of IterationsFigure 2: The probability plots for the joint a
tions ha1; b1i (solid) and ha3; b3i are shown when A and B arelevel-1 EUPs with no revelation, alternate revelation and simultaneous revelation (�gures from left to right).the mutually bene�
ial part of their sear
h spa
e, emulatingrestraint whi
h leads to mutual bene�t.Our experimental results suggest that, in an informationrevealing s
enario, an agent will learn to over
ome its greedy(myopi
) 
hoi
e given the following 
ondition - Let us 
on-sider two agents A and B. Ea
h agent has n a
tions to 
hoosefrom, where ais are the a
tions of agent A and bis those ofagent B. Now, let ax give the maximum expe
ted payo� toagent A. Under this 
ondition, agent A will have a predile
-tion to 
hoose a
tion ax during the initial exploration phase.Let us 
onsider an iteration where agent A reveals its a
tionto agent B. Let ax be the 
hosen a
tion for agent A. Now,agent B will 
hoose its best response to a
tion ax (it willsele
t the a
tion whi
h gives it the maximum average payo�given A's a
tion). Let this a
tion be by. Let Ra be the pay-o� to agent A due to a
tion-pair sele
tion (ax,by). If Ra isgreater than the average payo� due to the other a
tions thatagent A 
an take (Ra > maxw2OARw where OA representsother a
tions of agent A), the agents will learn to 
onvergeto the desirable a
tion-pair (ax,by).

5. CONCLUSIONS AND FUTURE WORKOur basi
 result is that there are 
ertain game-stru
tures,where sto
hasti
 modeling agents 
an 
onverge to high pay-o� points whi
h will be missed by sophisti
ated modelinglearners that are designed to produ
e Nash Equilibrium [3℄.We do not tout our empiri
al results as an argument foralways using EUPs.Our observation, however, 
learly demonstrates that learn-ing to sele
t a Nash Equilibrium is not ne
essarily the bestan agent 
an do, and that agents who are not bound bysu
h 
riteria 
an sometimes do better. In future, we plan tostudy the theoreti
al basis for sele
tion of a non-equilibriumsolution and identify the nature and extent of mutual trustne
essary to do so.An interesting observation from our results is that a
tionrevelation 
an lead to a more trusted behavior resulting inhigher payo�s to the agent. In the experiment with matrix3, agents (with a
tion revelation) 
hoose the more desirableNash Equilibrium in a matrix where there are two Nash
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Figure 3: Game matrix where a1 and b1 are relatively preferable to the agents while both ha3; b3i and ha1; b1iare the Nash Equilibria (left).
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Number of IterationsFigure 4: The probability plots for the joint a
tions ha1; b1i (solid) and ha3; b3i are shown when A and B arelevel-1 EUPs with no revelation, alternate revelation and simultaneous revelation (�gures from left to right).Equilibria. In the experiment with matrix 4, a more desir-able Pareto-optimal solution is a
hieved as opposed to a lessdesirable Nash Equilibrium when Simultaneous a
tion rev-elation is used. Thus, though 
ounter-intuitive, it appearsthat \showing one's hand" may, sometimes, be the desirablestrategy. The results also suggest that, an agent 
an learn toavoid revealing when the other agent tries to take advantageas shown in the experiment with matrix 4. Revealing 
anobviously lead to worst result for the revealer in a numberof s
enarios, e.g., the Prisoner's Dilemma [5℄. However, wefound out that both the agents learn to 
on
eal their a
tionsin a version of the Prisoner's Dilemma game. Our fo
us isto develop a strategy that allows an agent to 
hoose its a
-tion non-myopi
ally when the other agent reveals its a
tion.We hope to show that su
h a strategy will enable agents toendure the \lure" of short term pro�ts and may enable usto solve the iterated two-player Prisoner's Dilemma game.
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