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ABSTRACT

Multi-agent learning literature has looked at iterated two-
player games to develop mechanisms that allow agents to
learn to converge on Nash Equilibrium strategy profiles.
Such equilibrium configuration implies that there is no mo-
tivation for one player to change its strategy if the other
does not. Often, in general sum games, a higher payoff can
be obtained by both players if one chooses not to respond
optimally to the other player. By developing mutual trust,
agents can avoid iterated best responses that will lead to a
lesser payoff Nash Equilibrium. In this paper we consider
1-level agents (modelers) who select actions based on ex-
pected utility considering probability distributions over the
actions of the opponent(s). We show that in certain situa-
tions, such stochastically-greedy agents can perform better
(by developing mutually trusting behavior) than those that
explicitly attempt to converge to Nash Equilibrium. We
also experiment with an interesting action revelation strat-
egy that can give the revealer better payoff on convergence
than a non-revealing approach. By revealing, the revealer
can convince or encourage other agent to agree to a more
trusted equilibrium.

1. INTRODUCTION

Reinforcement learning techniques with performance and
convergence guarantees have been developed for isolated sin-
gle agents. The underlying assumption is that the envi-
ronment is stationary. Multi-agent or concurrent learning,
however, violates this assumption. As a result, the standard
reinforcement learning techniques (like Q-learning) are not
guaranteed to converge in a multi-agent environment. The
desired convergence in multi-agent systems is on an equilib-
rium strategy-profile (collection of strategies of the agents)
rather than optimal strategies for an individual agent.

The stochastic-game (or Markov Games) framework, a
generalization of Markov Decision Processes for multiple
players, has been used to model learning by agents in vari-
ous domains [2, 3, 4]. In [2], two basic types of multi-agent
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learners have been studied. The learners who do not model
other agents, effectively considering them as passive parts of
a non-stationary environment, are called ‘independent learn-
ers’ (ILs). We term these 0-level agents. In contrast to
such agents, those that observe others’ actions and rewards
and use these explicitly in modeling them, are called ‘joint-
action learners’ (JALs). We call these 1-level agents. Theo-
rem 1 in [2] claims that both 0 and 1-level agents converge
to equilibria in purely cooperative domains or coordination
games. But their work is not extendible to general domains
or general-sum games. The authors in [3] have adopted a
complete-information general-sum game approach and pro-
vide a learning scheme that allows learners to converge to a
mixed-strategy Nash Equilibrium in the limit.

Nash Equilibrium, however, does not guarantee that agents
will obtain the best possible payoffs, i.e., Nash Equilibrium
does not ensure Pareto-optimal solutions. Some non-Nash
Equilibrium action combinations may yield better payoffs
for both agents, which may be reached if the agents look
ahead while selecting actions [1]. Such desirable non-myopic
choices are preferred by both agents. While playing best re-
sponse to other agents’ current policy will lead to a deviation
from such desirable solutions, restraint or mutual trust can
enable players to stick to such action combinations.

In this paper we evaluate the possibility of concurrent

learners converging to such desirable non-myopic action choices.

While Hu and Wellman’s approach is guaranteed to con-
verge to Nash Equilibrium strategy profiles [3] under certain
conditions, independent, or even ordinary 1-level Q-learners
have no such guarantees. In our previous work, we have
observed that 0-level Q-learners often outperformed higher-
level Q-learners in the long run even though their learning
rate is slower [7]. In this paper we show that greedy modelers
can, in their turn, outperform equilibrium seeking modelers
in terms of the rewards received. We also investigate an in-
teresting variation of sequential play with action revelation.
The motivation behind this work is to determine whether
agents can learn to make desirable non-myopic choices by re-
vealing the actions they take to the other agents. By action
revelation, we mean that an agent (say A) takes a particu-
lar action and communicates its action to the other agent(s).
The other agent(s) take their action with full knowledge of
agent A’s action. We, in the current work, assume that
agents are truthful about their action revelation. We de-
sign a strategy where each agent is given an opportunity to
reveal its action at every alternate iteration (a game con-
sists of multiple iterations) of the game which we refer to as
Alternate revelation choice. Whether the agent chooses to



reveal its action depends on its previous experience (the pay-
off it received) when it chose to reveal/not reveal its action.
Another strategy that we designed and experimented with
is the Simultaneous revelation choice where both agents are
given an opportunity to reveal their actions at every itera-
tion of the game. As in the Alternate revelation choice, an
agent’s choice of action revelation is based on its previous
experience (the payoffs received) when it chose to reveal/not
reveal its action. We will explain both the strategies in detail
later. We present some interesting results in section 4 which
seem to indicate that, under certain game matrix configu-
rations (game matrices are discussed in section 2), agents
learn to converge to a more desirable Pareto-optimal solu-
tion when they learn to reveal their actions. On the contrary,
they converge to a myopic Nash equilibrium when they do
not adopt the revelation strategies discussed above. How-
ever, we still need to formalize our approach and investigate
the problem in greater depth before we can determine the
matrix configurations under which such results will be ob-
tained. The problem is exacerbated given that the strategies
are not guaranteed to converge in a multi-agent environ-
ment.

2. LEARNING IN REPEATED GAMES

In this section, we introduce some definitions to formulate
a framework for concurrent learning.

DEFINITION 1. A Markov Decision Process (MDP) is a
quadruple {S, A, T, R}, where S is the set of states, A is the
set of actions, T is the transition function, T : S X A —
PD(S), PD being a probability distribution, and R is the
reward function, R: S x A — R.

A multi-agent reinforcement-learning task can be looked upon
as an extended MDP, with S specifying the joint-state of the
agents, A being the joint-actions of the agents, (A1 x Ay X
... A, where A; is the set of actions available to the ith
agent), T' as the joint state-transition function, and the re-
ward function is redefined as R : Sx A — R"™. The functions
T and R are usually unknown, necessitating learning. The
goal of the ith agent is to find a strategy m; that maximizes
its expected sum of discounted rewards,

(s, m) =Y A E(rimi,mi,s0 = s)

t=0

where sg is the initial joint-state, r is the reward of the ith
agent at time ¢, 4 € [0,1) is the discount factor, and 7_;
is the strategy-profile of i’s opponents. In [3] the ith agent
learns 7w_; simultaneously, and opts for the best response to
it. Though myopically this is the best an agent can do, it
may miss opportunities for receiving higher payoffs as in the
well-known Prisoner’s Dilemma problem.

DEFINITION 2. A bimatriz game is given by a pair of ma-
trices, (M1, M2), (each of size |A1] x |Az2|) for a two-agent
game, where the payoff of the ith agent for the joint ac-
tion (a1,a2) is giwven by the entry Mi(ai,a2), V(ai,a2) €
Ay ><1427 = 1,2

Each stage of an extended-MDP for two agents (it can be
extended to n agents using n-dimensional tables instead of
matrices), can be looked upon as a bimatrix game. In this
paper we consider general-sum games where the individual

payoffs of the agents for any joint-action are uncorrelated.
We now define Nash equilibrium for such games.

DEFINITION 3. A pure-strategy Nash Equilibrium for a
bimatriz game (M1, M2) is a pair of actions (ai,a3) such
that

Mi(ay,a3) > Mi(a,a3) Yai € Ay

M>(ay,a3) > Mz(aj,az) Vaz € As

In a Nash equilibrium the action chosen by each player is
the best response to the opponent’s current strategy and no
player in this game has any incentive for unilateral deviation
from its current strategy. A general-sum bimatrix game may
not have any pure-strategy Nash Equilibrium.

DEFINITION 4. A mized-strategy Nash Equilibrium for a
bimatriz game (M1, M2) is a pair of probability vectors (w1, 75)
such that

TFIIMlﬂ; Z 71'1/M17I'; Vm € PD(Al)

TI'I/MQTI'; Z ﬂ'IIMQﬂ'Q Vmy € PD(AQ)

where PD(A;) 1is the set of probability-distributions over the
action space of the ith agent.

A significant property of mixed-strategy Nash Equilibria, is
that there always exists at least one such equilibrium profile
for an arbitrary finite bimatrix game [8]. Given such a bima-
trix game (Mi, M3), the mixed-strategy Nash Equilibrium,
(71, m3), can be computed using a quadratic programming
approach as outlined in [6].

We are interested in a non-myopic equilibrium where a
player not only considers its best response to current play-
ing trends, but also future possible retaliation by the other
player. For example, consider the two players playing 7
and 72 respectively and the first player getting 71 Man?
as a result. While considering another strategy w5 , A now
considers not only if Tt ManP > ﬂfMAnlB, but also if
7 ManP > 7r§4MA7rQB, where 72 is Bs best response to 4
(this equilibrium concept is similar in motivation to the non-
myopic equilibrium in the Theory of Moves approach [1]).
Of course, it is difficult to estimate the other player’s best
response, but this can be approximated based on past play
of the opponent.

3. Q-LEARNING

A general, single-agent reinforcement learning task is an
MDP, where the state transition and reward functions T and
R are unknown. A simple, model-free and on-line technique
for reinforcement learning is Q-learning [11]. In a stateless
domain, as is the case with single-stage games studied in
this paper, an independent Q-learner will have Q-values for
each action a, Q(a), and update them based on rewards r
received from taking action a as follows:

Q(a) «+ Q(a) + a(r — Q(a))

where « is the learning-rate. This iteration has been proved
to converge to optimal QQ-values, for a particular structure
of «, but independent of any particular exploration strat-
egy provided it satisfies some general requirements. When
a number of independent learners apply this algorithm, the



convergence-guarantee does not hold due to the non-stationarity

of the environment. However, such straightforward appli-
cations of Q-learning in multi-agent systems have achieved
success in the past [2, 9, 10, 12]. Our 1-level Q-learners learn
Q-values, Q(a,b), for each possible joint-action (a,b), using
its observation of the actions of the other agents, but solely
its own reward for joint-action. Thus the updation-rule used
is

Q(a,b) < Q(a,b) + a(r — Q(a,b))

To allow these 1-level Q-learning agents to increasingly
exploit their learned strategies, we use the Boltzmann ex-
ploration strategy, which slowly increases the exploitation
probability. In this exploration scheme, the action a is se-
lected with probability

oE(Q@)/T
S eP@@)N/T

where E(a) = >, ppQ(a,b), p» being computed as the relative-

frequency measure from B’s action history. Thus we call
these agents “expected utility based probabilistic learners”
or (EUPs). The temperature parameter T is started at a
high value (causing more exploration) and then decreased
over time, e.g., by multiplying with a decay factor, to in-
crease the exploitation probability.

We have also experimented with an interesting variation of
sequential play with action revelation. We allow one player
to reveal or announce its move at each iteration of the game.
The other player can choose its move based on complete
knowledge of the move made by its opponent. It might still
decide to explore its actions instead of playing best response
in order to thoroughly evaluate its options. actions. In the
revealing version of the game, the players keep not only an
estimate of py, the frequency distribution of its opponent’s
moves, but also the corresponding conditional frequency dis-
tribution, py)4, i.e., the likelihood that the opponent is going
to play its move b if the revealer plays b. Let us consider that
each agent has a set of n actions to choose from. The EUPs
have to keep an estimate of each of the n actions. However,
in the revealing scenario, each agent can reveal any of its
n actions or may choose not to reveal its action. So, for
each agent, we have to keep an estimate of 2n actions (an
estimate of an action when it reveals it and an estimate of
the same action when it does not reveal it). In the following
discussion, a, refers to a revealed action and an,, refers to a
non-revealed action. The () matrix has entries for all action
pairs Q(i, 7) where i € [1,n] and j € [1,n]. Also, ar and anr
can take values between 1 and n (including 1 and n). For-
mally, in the exploration scheme, any action a belonging to
the set of non-revealed actions is selected with probability

oF(Qa)/T
S eP@un)/T 5 eF Q)T

where E(anr) = Zb pr(anr,b) and EI(aT) = prb\arQ(aTab)

and any action a’ belonging to the set of revealed actions is
selected with probability

oF'(Q))/T
S eP@un/T S P (@Qu/T

Note that @ and a' can take any value between 1 and n
(including 1 and n).
We explored two variations of the revelation strategy.

e Alternate revelation choice: In this strategy, each
agent is given an opportunity to reveal its action at
every alternate iteration of the game (Any game has
1000 iterations in all our experiments).

e Simultaneous revelation choice: In this strategy,
both the agents are given an opportunity to reveal
their actions at every iteration of the game. If both
players agree on revealing, we randomly (with equal
probability) choose between the two players. Other-
wise, the player who learns to reveal is allowed to do
so, and the other player chooses its action based on
complete knowledge of the move made by its oppo-
nent. The primary difference between the two strate-
gies is that Simultaneous revelation choice determines
the revealer at every iteration of the game whereas Al-
ternate revelation choice has a predetermined revealer
and determines whether this agent wants to reveal its
action or not. The advantage of Simultaneous revela-
tion choice over Alternate revelation choice is as fol-
lows: Supposing one agent (A) learns to reveal its ac-
tion, whereas the other (B) does not. Also, when A
reveals its action, payoff for both A and B is higher
than when B does not reveal its action (otherwise A
will have no incentive to reveal its action). Given this,
in Alternate revelation choice, approximately 50% of
the time, B will be given the opportunity to reveal its
action (given that B has learnt not to reveal, it will
not use the opportunity) whereas in Simultaneous rev-
elation choice, A will always get the opportunity to
reveal its action (since B will refrain from revealing)
and thus, the average payoff for both agents will be
higher in Simultaneous revelation choice.

EXPERIMENTS

Our experimental work uses four game matrices (figure 1, 3, 5

and 7) to highlight how the agents learn to increase their in-
dividual rewards by revealing their actions. We experiment
with 3 x 3 game matrices. Each agent has three actions to
choose from, where a;s are the actions of agent A and b;s
those of agent B. For any action combination, the top-right
value in the corresponding matrix cell is the payoff to agent
B and the bottom-left value is the payoff to agent A. The
shaded entry in each matrix corresponds to the Nash Equi-
librium strategy-profile. The action-profile that the agents
prefer (greedy) and the desirable non-myopic solutions are
also marked in each game-matrix. Our experiments are de-
signed to evaluate the EUPs with no revelation, EUPs with
Alternate revelation choice and EUPs with Simultaneous
revelation choice.

4.1 Choice of Matrices

We use the four matrices to demonstrate the following
results:

e Matrix 1 (see figure 1) is used to demonstrate how
the two agents learn to choose the Nash Equilibrium
and not the Pareto-optimal solution irrespective of the
strategy chosen.

e Matrix 2 (see figure 3) is used to demonstrate how
the two agents learn to choose the desirable Nash Equi-
librium (which incidentally is the Pareto-optimal solu-
tion) irrespective of the strategy chosen.



e Matrix 3 (see figure 5) is used to demonstrate how the
agents learn to choose the desirable Nash Equilibrium
(which incidentally is the Pareto-optimal solution) us-
ing Alternate revelation choice and Simultaneous rev-
elation choice whereas EUPs fail to reach the desired
solution.

e Matrix 4 (see figure 7) is used to demonstrate how
Simultaneous revelation choice outperforms Alternate
revelation choice which, in turn, outperforms EUPs.

4.2 Experiments with Matrix 1

The matrix in figure 1 has a single pure Nash Equilibrium
given by the action-profile (as,bs) giving a payoff of 5 to
both agents. The desirable solution (Pareto-optimal), how-
ever, is for the action-combination (ai,b1) giving a payoff
of 10 to both agents. We used two EUPs using the above
Q-learning algorithm, learning for 1000 iterations and using
0.99 as the temperature decay factor starting at 7' = 10. The
probabilities of adopting joint-actions (ai,b1) and (as,bs)
as measured by frequencies were recorded every 100 inter-
actions averaged over the last 100 interactions. The values
in the figures were averaged over 10 runs, and these proba-
bilities are plotted in figure 2 (left). In this case, the EUPs
converge to the Nash Equilibrium in most of the runs even
though the payoff is less than the desirable payoff. This is
because the payoff matrix is constructed such that as is the
best response (actually in this example, a3 and b3 are also
the agents’ dominant strategies) of agent A irrespective of
B’s choice and b3 is the best response of agent B irrespective
of A’s choice.

We achieved similar results when we incorporated Alter-
nate revelation strategy and Simultaneous revelation strat-
egy in our agents. The probabilities of adopting joint-actions
(a1,b1) and {as, bs) are plotted in figure 2 (middle and right).

4.3 Experiments with Matrix 2

The matrix in figure 3 has both (ai,b1) and (as,bs) as
pure Nash Equilibria. (a1, b1) is also the Pareto-optimal so-
lution. The EUPs learn to adopt the desirable action combi-
nation (a1,b1) in most runs as shown in the probability plot
in figure 4 (left). A similar result is obtained in both Alter-
nate and Simultaneous revelation. The probability plots are
shown in figure 4 (middle and right).

4.4 Experiments with Matrix 3

The matrix in figure 5 has two pure Nash Equilibria given
by the action-profile (as,bs) giving a payoff of 5 to both
agents and the action-profile (a1,b1) giving a payoff of 10
to both agents. The desirable solution, however, is for the
action-combination (a1,b1) giving a payoff of 10 to both
agents. In this case, the EUPs converge to the undesirable
Nash Equilibrium in most of the runs even though the payoff
is less than the desirable payoff. This is because the payoff
matrix is constructed such that as is the best response (ac-
tually in this example, average payoffs for actions a3 and b3
are higher than actions a1 and b1) of agent A irrespective of
B’s choice and b3 is the best response of agent B irrespec-
tive of A’s choice. The probabilities of adopting joint-actions
(a1,b1) and (as, b3) are plotted in figure 6 (left).

The quadratic programming approach [3] produced a mixed
strategy (probability distribution) of [0,0,1] and [0, 0, 1] for
the agents A and B respectively. This corresponds to se-
lecting the (a3, bs) action combination. Thus, our EUPs

learn almost the same strategy as the mixed-strategy learn-
ers seeking Nash Equilibrium.

In both Alternate and Simultaneous revelation scheme,
the agents learn that their best response is to select action
1 when the other agent selects action 1 as shown in figure 6
(middle and right). When agent A reveals action 1, agent B
(see figure 5) will have higher probability of choosing action
1 and vice versa.

4.5 Experiments with Matrix 4

In the game matrix in figure 7, (as,bs) is the only pure
Nash Equilibrium. However, (a1,b1) is the desirable solu-
tion. From figure 8 (left) we can see that the EUPs learn to
select (as,b3) (the Nash Equilibrium solution).

The profile learned by 1-level mixed strategy agent for the
matrix in figure 7 (left) is [0.09, 0, 0.91] and [0.09, 0, 0.91] for
A and B respectively. This gives an expected reward of 5.45
to each of the mixed-strategy equilibrium learners, whereas
our EUPs receive expected reward of 5.0 for selection of the
joint-action (a1, b1) alone.

In the Alternate revelation scheme/strategy, the agents
take actions (a1,b1) and {as,bs) with almost equal proba-
bility (see figure 8 (middle)). Thus, the expected reward for
the agents is more when they reveal their action than when
they do not do so (EUPs).

Finally, in the Simultaneous revelation scheme/strategy,
the agents choose the action-profile (ai,b1) in most of the
runs (see figure 8 (right)). Thus, the agents learn to choose
the desirable action-pair combination in this scheme/strategy.

In the Alternate revelation scheme, each agent is given
a chance to reveal irrespective of whether it has learnt to
reveal or not. In the above experiments using revelation
schemes, A learns not to reveal its action (whenever A re-
veals action 1, B exploits A by taking action 3) whereas B
has learnt to reveal its action (action 1). In every alternate
iteration (whenever B gets the chance to reveal) B reveals its
action (action 1) and A makes its choice of action (action
1 with highest probability) based on that. However, dur-
ing A’s chance to reveal, A does not reveal its action (plays
action 3) and hence the agents always choose action-pair
(as,b3). So, the agents choose action-pair (a1, b1) whenever
B’s turn for revelation comes and action-pair (a3, b3) when-
ever A’s turn for revelation comes.

In the Simultaneous revelation scheme, B (having learnt
to reveal) always reveals its action (action 1) and hence, A
takes its best action (action 1 with highest probability) given
that B has taken action 1. A has not learnt to reveal and
hence never seeks to do so. Thus, both agents take action 1
and reach the desirable solution.

The question of mutual trust can be highlighted in the ma-
trix in figure 7. If a combination of (a1,b1) is being played,
agent B has the incentive to change its action from b; to b3
to increase its payoff from 10 to 11. When it makes such a
change, A’s optimal response would be to change from a; to
a3 to increase its payoff from 4 to 5. Thus, in their haste to
respond optimally to the current situation, both agents con-
verge to an equilibrium which pays them half of what they
could have got if they had showed restraint. Each of our
EUPs (in the simultaneous revelation scheme), on the other
hand, trusts the other’s probability-distribution over the ac-
tions (given that one of them reveals information about its
action selection) and selects its action stochastically based
on that distribution. Thus they progressively tend towards
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Figure 1: Game matrix where a3 and b3 are individually preferable to the agents, also only (a3, bs) is the Nash
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Figure 2: The probability plots for the joint actions (ai,b1) (solid) and (as,b3) are shown when A and B are
level-1 EUPs with no revelation, alternate revelation and simultaneous revelation (figures from left to right).

the mutually beneficial part of their search space, emulating
restraint which leads to mutual benefit.

Our experimental results suggest that, in an information
revealing scenario, an agent will learn to overcome its greedy
(myopic) choice given the following condition - Let us con-
sider two agents A and B. Each agent has n actions to choose
from, where a;s are the actions of agent A and b;s those of
agent B. Now, let a, give the maximum expected payoff to
agent A. Under this condition, agent A will have a predilec-
tion to choose action a, during the initial exploration phase.
Let us consider an iteration where agent A reveals its action
to agent B. Let a, be the chosen action for agent A. Now,
agent B will choose its best response to action a, (it will
select the action which gives it the maximum average payoff
given A’s action). Let this action be b,. Let R, be the pay-
off to agent A due to action-pair selection (aq,by). If R, is
greater than the average payoff due to the other actions that
agent A can take (R, > maxycoa Rw where O A represents
other actions of agent A), the agents will learn to converge
to the desirable action-pair (az,by).

5. CONCLUSIONS AND FUTURE WORK

Our basic result is that there are certain game-structures,
where stochastic modeling agents can converge to high pay-
off points which will be missed by sophisticated modeling
learners that are designed to produce Nash Equilibrium [3].
We do not tout our empirical results as an argument for
always using EUPs.

Our observation, however, clearly demonstrates that learn-
ing to select a Nash Equilibrium is not necessarily the best
an agent can do, and that agents who are not bound by
such criteria can sometimes do better. In future, we plan to
study the theoretical basis for selection of a non-equilibrium
solution and identify the nature and extent of mutual trust
necessary to do so.

An interesting observation from our results is that action
revelation can lead to a more trusted behavior resulting in
higher payoffs to the agent. In the experiment with matrix
3, agents (with action revelation) choose the more desirable
Nash Equilibrium in a matrix where there are two Nash

0
100 200 300 400 500 600 700 800 900 1000
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Figure 3: Game matrix where a1 and b; are relatively preferable to the agents while both (as3,b3) and (a1,b:1)
are the Nash Equilibria (left).
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are the Nash Equilibria (left).
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Figure 7: Game matrix where a1 and b; are relatively preferable to the agents but only (a3, bs) is the

Equilibrium (left).
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