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ABSTRACT
Multiagent learning literature has investigated iterated two-
player games to develop mechanisms that allow agents to
learn to converge on Nash Equilibrium strategy profiles.
Such equilibrium configuration implies that there is no mo-
tivation for one player to change its strategy if the other
does not. Often, in general sum games, a higher payoff can
be obtained by both players if one chooses not to respond
optimally to the other player. By developing mutual trust,
agents can avoid iterated best responses that will lead to
a lesser payoff Nash Equilibrium. In this paper we work
with agents who select actions based on expected utility cal-
culations that incorporates the observed frequencies of the
actions of the opponent(s). We augment this stochastically-
greedy agents with an interesting action revelation strat-
egy that involves strategic revealing of one’s action to avoid
worst-case, pessimistic moves. We argue that in certain sit-
uations, such apparently risky revealing can indeed produce
better payoff than a non-revealing approach. In particular,
it is possible to obtain Pareto-optimal solutions that domi-
nate Nash Equilibrium. We present results over a large num-
ber of randomly generated payoff matrices of varying sizes
and compare the payoffs of strategically revealing learners
to payoffs at Nash equilibrium.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; I.2.8 [Artificial Intelligence]: Learning—rein-
forcement learning

General Terms
Algorithms, Experimentation, Performance
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Agents, game playing, strategy revelation
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1. INTRODUCTION
Reinforcement learning techniques with performance and

convergence guarantees have been developed for isolated sin-
gle agents. The underlying assumption is that the envi-
ronment is stationary. Multi-agent or concurrent learning,
however, violates this assumption. As a result, the stan-
dard reinforcement learning techniques, e.g., Q-learning, are
not guaranteed to converge in a multi-agent environment.
The desired convergence in multi-agent systems is on an
equilibrium strategy-profile, i.e., collection of strategies of
the agents, rather than optimal strategies for an individual
agent.

The stochastic-game (or Markov Games) framework, a
generalization of Markov Decision Processes for multiple
players, has been used to model learning by agents in var-
ious domains [3, 4, 5]. This approach enables players to
learn the payoffs structure of the game, provided the play-
ers can observe the opponent’s action. They also ensure
convergence to certain equilibria under specific assumptions.
However, being able to observe the opponent’s action and
the structure of the game is not sufficient to reach a sat-
isfactory outcome. In [3], two basic types of multi-agent
learners have been studied. The learners who do not model
other agents, effectively considering them as passive parts
of a non-stationary environment, are called ‘independent
learners’ (ILs). We term these 0-level agents. In contrast
to such agents, those that observe others’ actions and re-
wards and use these explicitly in modeling them, are called
‘joint-action learners’ (JALs). We call these 1-level agents.
Theorem 1 in [3] claims that both 0 and 1-level agents con-
verge to equilibria in purely cooperative domains or coordi-
nation games. But their work is not extendible to general
domains or general-sum games. Others [4] have adopted a
complete-information general-sum game approach and pro-
vide a learning scheme that allows learners to converge to a
mixed-strategy Nash Equilibrium in the limit. Littman [6]
offers a Friend-or-Foe Q-learning approach which requires
less restrictions on the play for convergence, but assumes
more knowledge about the nature of the opponent, and in
particular whether the opponent is cooperative or competi-
tive in nature.

Nash Equilibrium, however, does not guarantee that agents
will obtain the best possible payoffs, i.e., Nash Equilibrium
does not ensure Pareto-optimal solutions. Some non-Nash
Equilibrium action combinations may yield better payoffs
for both agents, which may be reached if the agents look
ahead to future iterations of the game while selecting ac-
tions [2]. Such desirable non-myopic choices are preferred by



both agents. While playing best response to other agents’
current policy will lead to a deviation from such desirable
solutions, restraint or mutual trust can enable players to
stick to such action combinations.

In this paper we evaluate the possibility of concurrent
learners converging to such desirable non-myopic action choices.
In this paper we show that learning agents can outperform
equilibrium seeking modelers in terms of the rewards re-
ceived. We also investigate an interesting variation of se-
quential play with action revelation. The motivation behind
this work is to determine whether agents can learn to reach
preferable outcomes by revealing their actions before the
other player makes its move. By action revelation, we mean
that an agent (say A) takes a particular action and commu-
nicates its action to the other agent(s). The other agent(s)
take their action with full knowledge of agent A’s action. We
assume that agents are truthful about their action revela-
tion. Whether the agent chooses to reveal its action depends
on its previous experience (the payoff it received) when it
chose to reveal/not reveal its action.

We present some interesting results in section 4 which in-
dicate that, under certain game matrix configurations (game
matrices are discussed in section 2), agents learn to converge
to a more desirable Pareto-optimal solution when they learn
to reveal their actions. On the contrary, they converge to a
myopic Nash equilibrium when they do not adopt the rev-
elation strategies discussed above. We also present results
from a set of randomly generate matrices, that shows the
relative success of revealing learners in generating superior
payoffs to Nash equilibria.

2. GAMES AND EQUILIBRIA
In this section, we introduce some definitions to formulate

a framework for concurrent learning.

Definition 1. A bimatrix game is given by a pair of ma-
trices, (M1, M2), (each of size |A1| × |A2|) for a two-agent
game, where the payoff of the ith agent for the joint ac-
tion (a1, a2) is given by the entry Mi(a1, a2), ∀(a1, a2) ∈
A1 ×A2, i = 1, 2.

Each stage of an extended Markov Decision Process (MDP)
for two agents (it can be extended to n agents using n-
dimensional tables instead of matrices) can be modeled as
a bimatrix game. In this paper we consider general-sum
games where the individual payoffs of the agents for any
joint-action are uncorrelated. We now define Nash equilib-
rium for such games.

Definition 2. A pure-strategy Nash Equilibrium for a
bimatrix game (M1, M2) is a pair of actions (a∗

1, a
∗
2) such

that

M1(a
∗
1, a

∗
2) ≥M1(a1, a

∗
2) ∀a1 ∈ A1

M2(a
∗
1, a

∗
2) ≥M2(a

∗
1, a2) ∀a2 ∈ A2

In a Nash equilibrium the action chosen by each player is
the best response to the opponent’s current strategy and no
player in this game has any incentive for unilateral deviation
from its current strategy. A general-sum bimatrix game may
not have any pure-strategy Nash Equilibrium.

Definition 3. A mixed-strategy Nash Equilibrium for a
bimatrix game (M1, M2) is a pair of probability vectors (π∗

1 , π∗
2)

such that

π
∗
1 ′M1π

∗
2 ≥ π1′M1π

∗
2 ∀π1 ∈ PD(A1)

π
∗
1 ′M2π

∗
2 ≥ π

∗
1 ′M2π2 ∀π2 ∈ PD(A2)

where PD(Ai) is the set of probability distributions over the
action space of the ith agent.

Every finite bimatrix game has at least one mixed-strategy
Nash Equilibria profile [11]. Given such a bimatrix game
(M1, M2), the mixed-strategy Nash Equilibrium, (π∗

1 , π∗
2),

can be computed using a quadratic programming approach
as outlined in [9]. In [4] the ith agent learns π−i, i.e., the
strategies of the other player, simultaneously, and opts for
the best response to it. Though myopically this is the best
an agent can do, it may miss opportunities for receiving
higher payoffs as can be seen in the Prisoner’s Dilemma
problem [8].

We are interested in a non-myopic equilibrium where a
player not only considers its best response to current play-
ing trends, but also future possible retaliation by the op-
ponent. For example, consider the two players playing πA

1

and πB
1 respectively and the first player getting πA

1 MAπB
1

as a result. While considering another strategy πA
2 , A now

considers not only if πA
2 MAπB

1 > πA
1 MAπB

1 , but also if
πA

2 MAπB
1 > πA

2 MAπB
2 , where πB

2 is Bs best response to
πA

2 (this equilibrium concept is similar in motivation to the
non-myopic equilibrium concept adopted in the Theory of
Moves approach [2]). Of course, it is difficult to estimate
the other player’s best response, but this can be approxi-
mated based on past play of the opponent.

3. ESTIMATING PAYOFFS
A general, single-agent reinforcement learning task is an

MDP, where the state transition and reward functions are
unknown. A simple, model-free and on-line technique for
reinforcement learning is Q-learning [13].

Our 1-level Q-learners learn Q-values1, Q(a, b), for each
possible joint-action (a, b), using its observation of the ac-
tions of the other agents, but solely its own reward for joint-
action. Thus the updation-rule used is

Q(a, b)← Q(a, b) + α(r −Q(a, b))

To allow these 1-level Q-learning agents to increasingly ex-
ploit their learned strategies, we use the Boltzmann explo-
ration strategy, which slowly increases the exploitation prob-
ability. In this exploration scheme, the action a is selected
with probability

eE(a)/TP
a′ eE(a′)/T

,

where E(a) =
P

b pbQ(a, b), pb being computed as the relative-
frequency measure from B’s action history. Thus we call
these agents “expected utility based probabilistic learners”
or (EUPs). The temperature parameter T is started at a
high value (causing more exploration) and then decreased
over time, e.g., by multiplying with a decay factor, to in-
crease the exploitation probability.

1For the current, stateless version of the games, the degen-
erate form of Q-learning with no lookahead is used. A better
characterization is to view our learners as action estimators.



We have also experimented with an interesting variation
of sequential play with action revelation. We allow one
player to reveal or announce its move at each iteration of
the game. The other player can choose its move based on
complete knowledge of the move made by its opponent. It
might still decide to explore its actions instead of playing
best response if it believes its action estimates are not cor-
rect and further exploration is needed to update them to
the actual values. In this paper, however, agents use best
response actions when the other player reveals. In the re-
vealing version of the game, the players keep separate counts
of the frequency based estimates of its opponent’s moves for
both of the following cases:

• an estimate pb that the opponent is going to play its
move b if the modeling player is not revealing its action
choice, and

• an estimate pb|a that the opponent is going to play
its move b if the modeling player reveals its choice of
action a.

Let us consider that each agent has a set of n actions to
choose from. The EUPs have to keep an estimate of each
of the n actions. However, in the revealing scenario, each
agent can reveal any of its n actions or may choose not to
reveal its action. So, each agent maintains two different
Q-tables: one corresponding to estimates of the payoff for
actions when the agent reveals it, Qr, and the other cor-
responding to estimates of the payoff for the same actions
when the agent does not reveal it, Qnr. In the following
discussion, ar refers to a revealed action and anr refers to
a non-revealed action. Formally, in the exploration scheme,
any action anr belonging to the set of non-revealed actions
is selected with probability

eEnr(anr)/TP
anr

eEnr(anr)/T +
P

ar
eEr(ar)/T

,

where Enr(anr) =
P

b pbQnr(anr, b) and
E(ar) =

P
b pb|ar

Qr(ar, b) and any action ar belonging to
the set of revealed actions is selected with probability

eEr(ar)/TP
anr

eEnr(anr)/T +
P

ar
eEr(ar)/T

.

Note that ar and anr can take any value between 1 and n.
We explored two variations of the revelation strategy.

Alternate revelation choice: In this strategy, each agent
is given an opportunity to reveal its action at every
alternate iteration of the game.

Simultaneous revelation choice: In this strategy, both
the agents are given an opportunity to reveal their ac-
tions at every iteration of the game. If both players
agree on revealing, we randomly (with equal probabil-
ity) choose between the two players. Otherwise, the
player who learns to reveal is allowed to do so, and
the other player chooses its action based on complete
knowledge of the move made by its opponent. The
primary difference between the two strategies is that
Simultaneous revelation choice determines the revealer
at every iteration of the game whereas Alternate reve-
lation choice has a predetermined revealer and deter-
mines whether this agent wants to reveal its action or

not. The advantage of Simultaneous revelation choice
over Alternate revelation choice is as follows: Suppos-
ing one agent, A, learns to reveal its action, whereas
the other, B, does not. Also, when A reveals its action,
payoff for both A and B is higher than when B does
not reveal its action (otherwise A will have no incen-
tive to reveal its action). In this case and when using
Alternate revelation choice, in approximately 50% of
the time, B will be given the opportunity to reveal
its action and will not use the opportunity. With the
Simultaneous revelation choice, A will always get the
opportunity to reveal its action since B will refrain
from revealing, and thus, the average payoff for both
agents will be higher

4. EXPERIMENTS
Our experimental work is presented in two stages. In the

first stage, we use four game matrices to illustrate represen-
tative behaviors of EUP and revelation strategies. While
these results and corresponding discussion throw some light
on the characteristics of these learning approaches, it is not
possible to immediately draw general conclusions about the
success of these strategies when tested on arbitrary game
matrices. Hence in the next experimental stage we randomly
generate a large number of game matrices of different sizes
and evaluate the performance of revealing strategies when
compared to both pure and mixed strategy Nash equilibria
payoffs in that game.

4.1 Four representative matrices
In the first stage we use four game matrices (figure 1, 3, 5

and 7) to highlight how the agents learn to increase their in-
dividual rewards by revealing their actions. We experiment
with 3 × 3 game matrices. Each agent has three actions to
choose from, where ais are the actions of agent A and bis
those of agent B. For any action combination, the top-right
value in the corresponding matrix cell is the payoff to agent
B and the bottom-left value is the payoff to agent A. The
shaded entry in each matrix corresponds to the Nash Equi-
librium strategy-profile. The greedy action-profile that the
agents prefer and the desirable non-greedy solutions are also
marked in each game-matrix. Our experiments are designed
to evaluate the EUPs with no revelation, EUPs with Alter-
nate revelation choice and EUPs with Simultaneous revela-
tion choice.

We use the four matrices to demonstrate the following
results:

• Matrix 1 (see figure 1) is used to demonstrate how
the two agents learn to choose the Nash Equilibrium
and not the Pareto-optimal solution irrespective of the
strategy chosen.

• Matrix 2 (see figure 3) is used to demonstrate how the
two agents learn to choose the desirable Nash Equilib-
rium, which is also the Pareto-optimal solution, irre-
spective of the strategy chosen.

• Matrix 3 (see figure 5) is used to demonstrate how
both action revealing agents learn to choose the pareto-
optimal Nash Equilibrium whereas EUPs fail to con-
verge to this desired solution.



• Matrix 4 (see figure 7) is used to demonstrate how
Simultaneous revelation choice outperforms Alternate
revelation choice, which, in turn, outperforms EUPs.

4.1.1 Experiments with Matrix 1

b1 b2                 b3

a1

a2

a3

10                   0                       0

0

1                      1                       1

10                      1                       15

    0                        1                       15

15                    15                     5

1                        5 Greedy

Desired

Figure 1: Game matrix where a3 and b3 are individ-
ually preferable to the agents, also only 〈a3, b3〉 is the
Nash Equilibrium.

The matrix in figure 1 has a single pure Nash Equilibrium
given by the action-profile 〈a3, b3〉 giving a payoff of 5 to
both agents. The desirable pareto-optimal solution, how-
ever, is for the action-combination 〈a1, b1〉 giving a payoff of
10 to both agents. Two EUP learners played the game for
1000 iterations using initial temperature of 10 and a tem-
perature decay factor of 0.99. The probabilities of adopting
joint-actions 〈a1, b1〉 and 〈a3, b3〉 were measured every 100
interactions as the frequencies of choosing different actions
over the last 100 interactions. The values were averaged over
10 runs, and these probabilities are plotted in figure 2 (left).
In this case, the EUPs converge to the Nash Equilibrium
in most of the runs even though the payoff is less than the
desirable payoff. This is because the payoff matrix a3 and
b3 are the agents’ dominant strategies. We achieved similar
results when we incorporated Alternate revelation strategy
and Simultaneous revelation strategy in our agents. The
probabilities of adopting joint-actions 〈a1, b1〉 and 〈a3, b3〉
are plotted in Figure 2 (middle and right).

4.1.2 Experiments with Matrix 2

b1 b2                 b3

a1

a2

a3

10                   15                     4

0                     0                        1

4

0                    0                         5

   1                       5

    15                         0                      0

10                         9                      0

Desired/Greedy

Figure 3: Game matrix where a1 and b1 are relatively
preferable to the agents while both 〈a3, b3〉 and 〈a1, b1〉
are the Nash Equilibria (left).

The matrix in figure 3 has both 〈a1, b1〉 and 〈a3, b3〉 as
pure Nash Equilibria. 〈a1, b1〉 is also the Pareto-optimal so-
lution. The EUPs learn to adopt the desirable action combi-
nation 〈a1, b1〉 in most runs as shown in the probability plot

in figure 4 (left). A similar result is obtained in both Alter-
nate and Simultaneous revelation. The probability plots are
shown in figure 4 (middle and right).

4.1.3 Experiments with Matrix 3

b1 b2                 b3

a1

a2

a3

10                   0                       0

0

1                      1                       1

    0                        1                       15

1                        5

10                      1                       9

9                     15                     5

Desired

Greedy

Figure 5: Game matrix where a3 and b3 are relatively
preferable to the agents while both 〈a1, b1〉 and 〈a3, b3〉
are the Nash Equilibria (left).

The matrix in figure 5 has two pure Nash Equilibria given
by the action-profile 〈a3, b3〉 giving a payoff of 5 to both
agents and the action-profile 〈a1, b1〉 giving a payoff of 10
to both agents. The desirable solution, however, is for the
action-combination 〈a1, b1〉 giving a payoff of 10 to both
agents. In this case, the EUPs converge to the undesirable
Nash Equilibrium in most of the runs even though the payoff
is less than the desirable payoff. This is because the pay-
off matrix is constructed such that the average payoffs for
actions a3 and b3 are higher than actions a1 and b1 respec-
tively. The probabilities of adopting joint-actions 〈a1, b1〉
and 〈a3, b3〉 are plotted in figure 6 (left).

The quadratic programming approach [4] produced a mixed
strategy (probability distribution) of [0, 0, 1] and [0, 0, 1] for
the agents A and B respectively. This corresponds to se-
lecting the 〈a3, b3〉 action combination. Thus, our EUPs
learn almost the same strategy as the mixed-strategy learn-
ers seeking Nash Equilibrium.

In both Alternate and Simultaneous revelation scheme,
the agents learn that their best response is to select action
1 when the other agent selects action 1 as shown in figure 6
(middle and right). When agent A reveals action 1, agent B
(see figure 5) will have higher probability of choosing action
1 and vice versa.

4.1.4 Experiments with Matrix 4

b1 b2                 b3

a1

a2

a3
1                        5 Greedy

Desired

10                      9                       11

10                   15                       4

    15                        0                       0

0                      0                        1

4

0                     0                        5

Figure 7: Game matrix where a1 and b1 are relatively
preferable to the agents but only 〈a3, b3〉 is the Nash
Equilibrium (left).
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Figure 2: Probabilities for choosing joint actions 〈a1, b1〉 (solid) and 〈a3, b3〉 for Matrix 1 when A and B are
level-1 EUPs with no revelation, alternate revelation and simultaneous revelation (figures from left to right).
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Figure 4: Probabilities for choosing joint actions 〈a1, b1〉 (solid) and 〈a3, b3〉 for Matrix 2 when A and B are
level-1 EUPs with no revelation, alternate revelation and simultaneous revelation (figures from left to right).

In the game matrix in figure 7, 〈a3, b3〉 is the only pure
Nash Equilibrium. However, 〈a1, b1〉 is the desirable solu-
tion. From figure 8 (left) we can see that the EUPs learn to
select 〈a3, b3〉, the Nash Equilibrium solution.

In the Alternate revelation scheme/strategy, the agents
take actions 〈a1, b1〉 and 〈a3, b3〉 with almost equal proba-
bility (see figure 8 (middle)). Thus, the expected reward
for the agents is more when they reveal their action than
when they do not do so. Finally, in the Simultaneous reve-
lation scheme/strategy, the agents choose the action-profile
〈a1, b1〉 in most of the runs (see figure 8 (right)). Thus, the
agents learn to choose the desirable action-pair combination
in this scheme/strategy.

In the above experiments using revelation schemes, A
learns not to reveal its action: whenever A reveals action
1, B exploits A by taking action 3. B, however, learns to
reveal its action 1. When using alternate revelation, in ev-
ery alternate iteration, i.e., whenever B gets the chance to
reveal, B reveals action 1 and A responds by choosing ac-
tion 1 with high probability. However, during A’s chance
to reveal, A does not reveal its action, plays action 3, and
hence the agents always choose action-pair 〈a3, b3〉. So, the
agents choose action-pair 〈a1, b1〉 whenever B’s turn for rev-
elation comes and action-pair 〈a3, b3〉 whenever A’s turn for
revelation comes.

In the Simultaneous revelation scheme, B, having learnt
to reveal, always reveals action 1 and A responds with its
best action, i.e., action 1, with high probability. A has not
learnt to reveal and hence never seeks to do so. Thus, both
agents choose action 1 and reach the desirable solution.

The question of mutual trust can be highlighted in the ma-
trix in figure 7. If a combination of 〈a1, b1〉 is being played,
agent B has the incentive to change its action from b1 to b3

to increase its payoff from 10 to 11. When it makes such a
change, A’s optimal response would be to change from a1

to a3 to increase its payoff from 4 to 5. Thus, in their haste
to respond optimally to the current situation, both agents

converge to an equilibrium which pays them half of what
they could have got if they had showed restraint. Each of
the revealing EUPs, in the simultaneous revelation scheme,
on the other hand, trusts the other’s probability-distribution
over the actions and selects its action stochastically based on
that distribution. Thus they progressively tend towards the
mutually beneficial solution in the action space, emulating
restraint which leads to mutual benefit.

4.1.5 Some analysis
Based our experience with the above experiments, we out-

line the requirements for information revealing to generate
desirable, pareto-optimal solutions. Let us consider two
agents A and B. Each agent has n actions to choose from,
where ais are the actions of agent A and bis those of agent
B. Now, let ax give the maximum expected payoff to agent
A. Under this condition, agent A will want to choose action
ax during the initial exploration phase. Let us consider an
iteration where agent A reveals its action to agent B. Let ax

be the chosen action for agent A. Now, agent B will choose
its best response to action ax, i.e., it will select the action
which gives it the maximum average payoff given A’s ac-
tion. Let this action be by. Let Ra be the payoff to agent
A due to action-pair selection (ax,by). If Ra is greater than
the average payoff due to the other actions that agent A can
take (Ra > maxw∈OA Rw where OA represents other actions
of agent A), the agents will learn to converge to the desir-
able action-pair (ax,by). This is an initial, but incomplete,
characterization of conditions necessary for convergence by
revealing learners to pareto-optimal solutions.

4.2 Summary results over randomly gener-
ated matrices

To evaluate the general applicability of these strategic re-
vealing based learning approaches, we generated 1000 ran-
dom matrices each for agent action space sizes of 3, 5, and
7. Our goal was to find out how the payoff from solutions
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Figure 6: Probabilities for choosing joint actions 〈a1, b1〉 (solid) and 〈a3, b3〉 for Matrix 3 when A and B are
level-1 EUPs with no revelation, alternate revelation and simultaneous revelation (figures from left to right).
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Figure 8: Probabilities for choosing joint actions 〈a1, b1〉 (solid) and 〈a3, b3〉 for matrix 4 when A and B are
level-1 EUPs with no revelation, alternate revelation and simultaneous revelation (figures from left to right).

generated by the revealing strategies compared to Nash equi-
librium payoffs.

To find out the different Nash equilibrium for a given
payoff matrix, we used the Gambit game theory software
(http://www.hss.caltech.edu/gambit/). In the following
we describe our comparison metrics. We use the following
notation: NEi,j is the set and nij = |NEi,j | is the corre-
sponding number of pure and mixed strategy Nash Equi-
libria present in the jth of the 1000 i × i payoff matrices.
NEk

i,j ∈ NEi,j is the k of the nij Nash equilibria, and

NEk
i,j(A) and NEk

i,j(B) correspond to the payoffs received
by players A and B if they play the corresponding strategies.
From the experiments presented in the last section it is clear
that different runs of the revealing strategy can converge to
different solutions. For fair comparison, we calculate the av-
erage of the payoffs returned by the revealing strategy over
ten runs with different random number sequence on each
matrix. These average payoffs for the jth of the i× i payoff
matrix is referred to as Ri,j(A) and Ri,j(B) for players A

and B respectively.
For comparison of the solutions generated by the reveal-

ing strategies with Nash Equilibrium solutions for the same
matrices we report the following measurements. The basic
measure is that of dominance. For a given problem size i, we
partition the i× i matrices into three sets: {Di

NE , Di
R, Di

=}
based on the following criteria

• the jth payoff matrix is a member of Di
NE if the payoffs

from any of the Nash equilibria solution for that matrix
dominates the average payoff from revealing solutions,
i.e., ∃x ∈ NEi,j s.t. either x(A) ≥ Ri,j(A) & x(B) >

Ri,j(B) or x(A) > Ri,j(A) & x(B) ≥ Ri,j(B).

• the jth payoff matrix is a member of Di
R if the payoffs

from all of the Nash equilibria solutions for that matrix
are dominated by the average payoff from revealing
solutions, i.e., ∀x ∈ NEi,j either x(A) ≤ Ri,j(A) &
x(B) < Ri,j(B) or x(A) < Ri,j(A) & x(B) ≤ Ri,j(B).

• the jth payoff matrix is a member of Di
= if none of the

above conditions hold.

Let pi
NE, pi

r, p
i
= be the corresponding percentage of matrices

where some Nash equilibria dominate the average revealing
based payoff, the average revealing based payoff dominates
all Nash equilibria payoffs, and when the Nash equilibria and
the revealing based payoffs do not dominate each other. We
plot these percentages, over 1000 randomly generated ma-
trices each, for problems of size 3, 5, and 7 in Figure 9. We
find that for the smallest problem size, i.e., 3 actions per
agent, the revealing strategy do dominate the Nash equi-
librium payoffs more often. As the problem sizes increase
though, the revealing strategy gets dominated more often.
The number, but not the percentage, of “no dominance” sit-
uation also decreases. It was still surprising for us to observe
that such a simple revealing strategy can end up dominating
Nash equilibrium payoffs in a significant number of scenar-
ios.

Note that the above comparison is somewhat biased against
the revealing strategy. Whereas we take the average payoff
from the different runs with the revealing strategy, we do not
consider the average of the Nash equilibria payoffs. Learn-
ers that converge to Nash equilibria have no guarantee of
converging to a dominant Nash equilibria. Another compar-
ison metric can be to see how many of the individual Nash
equilibrium solutions dominate the average revealing pay-
offs and vice versa2. We also report the cases when neither
dominate. The results are plotted in Figure 10 for different

2We note that the total number of Nash Equilibrium in the
1000 randomly generated matrices grows with the size of the
matrices. The corresponding numbers for problem sizes 2, 5,
and 7 are 1871, 2682, and 4692. Therefore the average num-
ber of Nash equilibria per matrix grows from approximately
1.87 to 2.68 to 4.69 as the action space of agent grow from
3, 5, 7. These numbers depend, of course, on the assump-
tion of uniformly generated random numbers to designate
payoffs.
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Figure 9: Percentage of matrices where some Nash
equilibrium solution dominated the average reveal-
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nated all Nash equilibrium solutions on the same
matrix.
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Figure 10: Percentage of Nash equilibrium solutions
that dominated, was dominated, or was incompa-
rable to the average revealing payoffs on the same
matrix.

problem sizes. We now see that the average revealing payoff
dominates a significantly larger number of Nash equilibrium
payoffs and the frequency of domination grows with larger
problem sizes. The number of non-dominating cases grows
at a lesser rate, and hence the corresponding percentage de-
creases.

We next analyzed the non-dominated payoff cases. We
wanted to find out whether revealing strategies produced
greater social benefits in these cases, i.e., whether the sum
of the payoffs to the two agents is higher with the revealing
approach compared to Nash equilibrium solutions. We plot
these sums in Figure 11. We found that for non-dominated
cases, the average revealing payoff sum is almost twice as
likely to be greater than the sum of Nash equilibrium payoff
on the same matrix. Figures 11 and 10 combined supports
the argument that revealing learners are likely to produce
larger and more dominant social welfare compared to learn-
ers that converge to some Nash equilibrium solutions.

We now revisit our argument that it is somewhat un-
fair to compare the average revealing payoff with the best
Nash equilibrium payoff. Rather, for a given matrix j for

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8

per
cen

tile

number of actions

Reveal is better 

Nash is better

Reveal is better 

Nash is better

Figure 11: Percentage of Nash equilibrium solutions
where the sum of payoffs to both agents from it was
greater or less than the sum of the average payoffs
obtained by revealing strategy on the same matrix
when neither the Nash equilibrium payoff nor the
average revealing payoff was dominant.

a problem size i we can compare 1
nij

Pk=nij

k=1 (NEk
i,j(A) +

NEk
i,j(B)), i.e., the average of the two payoffs over all Nash

equilibrium for the matrix, with Ri,j(A)+Ri,j(B), the sum
of the average payoff from the revealing strategy for the same
matrix. We present in Figure 12 the percentage of times the
average of the sum of the payoffs from all Nash equilibria in
a matrix is more or less than the sum of the average payoffs
obtained by the revealing approach. We see that in this,
somewhat fairer metric, the revealing approach significantly
outperforms the Nash Equilibrium solutions, and this per-
formance difference grows for larger problem sizes. The per-
centages do not add up to 100, because in some cases the
payoffs produced by both approaches are the same. Note
though that in this case, we are evaluating dominance from
the social welfare point of view, and not from the individ-
ual selfish payoff perspective. One can argue, however, that
this observation may increase the viability of the revealing
strategy if the possibility of side payments is accepted, i.e.,
agents can negotiate to subsequently reallocate larger pay-
offs obtained by playing the revealing strategy.

5. DISCUSSIONS
Learning in the context of iterated bimatrix and stochas-

tic games have received considerable attention in the multi-
agent learning literature [1, 4, 6]. The focus of these work
is on convergence to rational play. An orthogonal line of re-
search have addressed the problem of improving payoffs over
Nash equilibria solutions. One of these methods use aspi-
ration levels and does not require a learner to know about
the choices or payoffs of the opponent [12]. This method,
however, is critically dependent on the choice of appropriate
aspiration levels. Another method uses stubbornness and
threats as implicit communication to lead the opponent to
desirable solutions [7]. This method, however, requires the
knowledge of both opponent action and the payoffs they re-
ceive. In this work, we assume that only the actions taken
by the opponent, and not the payoffs they receive, are ob-
servable.

Our basic result is that there are certain game-structures,
where apparently harmful (as revealing actions opens up



10

20

30

40

50

60

70

80

2 3 4 5 6 7 8

per
cen

tile

number of actions

Reveal is better 

Nash is better

Figure 12: Percentage of matrices where average
of the sum of payoffs to both agents over all Nash
equilibriums of a matrix was greater or less than
the sum of the average payoffs obtained by revealing
strategy.

possibilities for best response play by opponent which can
hurt the revealer’s interests), action-revealing agents can
converge to high payoff solutions which will be missed by so-
phisticated modeling learners that are designed to produce
Nash Equilibrium [4]. Our results from both sample ma-
trices and average results over a large set of randomly gen-
erated matrices demonstrate that a simple revealing based
learning strategy can consistently provide better rewards
than what can be obtained with learners trying to achieve
Nash equilibrium. Together with the lack of any method
guaranteed to learn Nash equilibrium [10] in general-sum
games, the current results can be used as a motivation to
study alternative goals for learning agents. In future, we
plan to study the theoretical basis for selection of a non-Nash
equilibrium solution and identify the nature and extent of
mutual trust necessary to do so.

We plan to study the converge behavior of the reveal-
ing learner with the goal of characterizing when such learn-
ing behavior will produce Pareto-optimal solutions. A sec-
ondary goal in this process of study will be to identify pos-
sible improvements to the current revealing mechanism.

An interesting observation from our results is that action
revelation can lead to a more trusted behavior resulting in
higher payoffs to the agent. In the experiment with matrix
3, agents (with action revelation) choose the more desirable
Nash Equilibrium in a matrix where there are two Nash
Equilibria. In the experiment with matrix 4, a more desir-
able Pareto-optimal solution is achieved as opposed to a less
desirable Nash Equilibrium when Simultaneous action rev-
elation is used. Thus, though counter-intuitive, it appears
that “showing one’s hand” may, sometimes, be the desirable
strategy. The results also suggest that an agent can learn
to avoid revealing when the other agent tries to take advan-
tage as shown in the experiment with matrix 4. Revealing
can obviously lead to worst result for the revealer in a num-
ber of scenarios, e.g., the Prisoner’s Dilemma [8]. However,
we found out that both the agents learn to conceal their
actions in a version of the Prisoner’s Dilemma game. Our
focus is to develop a strategy that allows an agent to choose
its action non-myopically when the other agent reveals its
action. The strategy of best response to revealed action used

in this paper is a greedy one. We plan to work on developing
non-myopic strategies with strategic look-ahead in iterated
games and show that such a strategy will enable agents to
endure the “lure” of short term profits and may enable us
to solve difficult problems like the iterated two-player Pris-
oner’s Dilemma game.
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