
Reaching Pareto Optimality in Prisoner’s Dilemma Using Conditional Joint
Action Learning

Dipyaman Banerjee and Sandip Sen
Department of Mathematics & Computer Science

The University of Tulsa
{dipu,sandip}@utulsa.edu

Abstract

We consider a repeated Prisoner’s Dilemma game
where two independent learning agents play against
each other. We assume that the players can observe each
others’ action but are oblivious to the payoff received
by the other player. Multiagent learning literature has
provided mechanisms that allow agents to converge to
Nash Equilibrium. In this paper we define a special
class of learner called a conditional joint action learner
(CJAL) who attempts to learn the conditional probabil-
ity of an action taken by the other given its own action
and uses it to decide its next course of action. We prove
that when played against itself, if the payoff structure of
Prisoner’s Dilemma game satisfies certain conditions,
using a limited exploration technique these agents can
actually learn to converge to the Pareto optimal solution
that dominates the Nash Equilibrium, while maintaining
individual rationality. We analytically derive the condi-
tions for which such a phenomenon can occur and have
shown experimental results to support our claim.

Keywords: Multiagent Learning, Game theory, Pris-
oner’s Dilemma.

Introduction
The problem of learning in multi agent system has attracted
increasing attention in the recent past (Wellman & Hu 1998;
Hu & Wellman 2003; Littman 1994; Claus & Boutilier
1997; Littman 2001; Matsubara, Noda, & Hiraki 1996;
Bowling & Veloso 2004; Littman & Stone 2001). As a
result a number of learning mechanisms were discovered
which were proved to converge to Nash Equilibrium un-
der certain conditions (Hu & Wellman 2003; Littman 1994;
Conitzer & Sandholm 2003; Littman & Stone 2005; Bowl-
ing & Veloso 2004). However many of these mechanisms
assume complete transparency of payoffs for both the play-
ers, which may not be always possible in real environments.
Moreover, convergence to Nash Equilibrium was assumed to
be a desirable criteria for these algorithms, which in many
cases may not be Pareto-optimal and may lead to poorer
payoff for the players. Under imperfect conditions, where
a player can observe the action of all other players but not
their payoffs the learning problem is even more difficult as
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the agents have less information to compute their optimal
action. Though some independent reinforcement learning
algorithms have achieved success in the past (Sekaran &
Sen 1994; Weiß 1993) the non-stationary nature of the envi-
ronment precludes the guarantee of convergence for single
agent reinforcement learning mechanism.

Claus and Boutilier (Claus & Boutilier 1997) have shown
the dynamics of reinforcement learning in a cooperative
game. They described two kind of learners: Independent
learners and Joint Action learners. An independent learner
assumes the world to be stationary and ignores the pres-
ence of other players. However, a joint action learner
computes the joint probabilities of different actions taken
by other players and use them to calculate the expected
value of its own actions. Unfortunately, JAL-s do not
perform dramatically better than ILs as the Q-values as-
sociated with the actions of a JAL learner degenerate to
that learned by an IL learner (Claus & Boutilier 1997;
Mundhe & Sen 1999). We believe that the primary impedi-
ment to JAL’s performance improvement is their assumption
that actions of different agents are uncorrelated, which isnot
the case in general. In this paper we present a new learner
which understands and tries to use the fact that its own ac-
tions affect the action of other agents. Instead of marginal
probabilities it uses conditional probabilities of the actions
taken by other agents given its own actions, to compute the
expected value of its action choices. From now on we will
refer to this class of learners as Conditional Joint Action
Learner or CJAL.

In self-play, CJAL learners do not to converge to equilib-
rium every time. On the other hand, they guarantee conver-
gence to a Pareto-optimal outcome under certain restrictions
over the payoff structure. We in this paper primarily focus
on the game of prisoner’s dilemma between two players and
derive the conditions for which the players will converge to
a Pareto optimal solution. We also describe the effect of ex-
ploration strategy on these conditions. We show that under
these restrictions a combination of purely explorative and
purely exploitative exploration will always eventually lead
to Pareto optimality. We have also used anǫ greedy strategy
and derived an upper bound forǫ, above which agents can
never converge to Pareto-optimality. We support our theo-
retical analysis with experimental results.

The rest of the paper is organized as follows: section 2 de-



scribes the Prisoner’s Dilemma game and the CJAL learning
algorithm. In section 3 we prove the conditions for reaching
Pareto-optimality in prisoner’s dilemma for CJAL learners
when played against itself and discuss the effect of explo-
ration on the algorithm. In section 4 we provide experimen-
tal results and finally in section 5 we conclude the paper and
give directions to future work.

CJAL Learning Mechanism

Prisoner’s Dilemma

In a 2-player Prisoner’s Dilemma (PD) game, two agents
play against each other where each agent has a choice of two
actions namely, cooperate(C) or defect(D). The bimatrix
form of this single stage game is shown below:

C D
C R,R S,T
D T,S P,P

and the following inequalities hold:

T > R > P > S

and

2R > T + S

Under these conditions the dominant strategy for a player
is to defect and so the defect-defect action combination
is a dominant strategy equilibrium and the only Nash
Equilibrium. But this is a Pareto suboptimal solution as
the cooperate-cooperate action combination dominates this
Nash Equlibrium. So the paradox is, even there exists an
action-combination which has a better payoff, the players
still chose the suboptimal action combination using individ-
ual rationality. We claim that under imperfect condition as
described above a CJAL learner when played against itself
can actually find this cooperate-cooperate solution which
maximizes the social welfare and can stick with it given cer-
tain payoff structure (still satisfying the inequalities), and
suitable exploration techniques.

In this paper we concentrate on two-player games where
the players play with one another repeatedly and tries to
learn the optimal action choice which maximize their ex-
pected utility. We would like to point out that this prob-
lem is different from a repeated Prisoner’s Dilemma game.
Though the players interact repeatedly, they are unaware
about the duration for which the game will be played. In
other words they ignore the future discounted rewards while
computing their expected utility and choose its optimal ac-
tion only based on the history of interactions they had in the
past. This gaming environment is different from a repeated
Prisoner’s Dilemma problem as dealt by Sandholm et. al
(Sandholm & Crites 1995) where agents use the information
about duration of the game to compute their expected utility.
Also note that, the players have no clue that it is a Prisoner’s
Dilemma game as they are oblivious to each others’ payoffs
and are only interested in maximizing individual payoffs.

CJAL Learning
We assume a setS of 2 agents where each agenti ∈ S
has a set of actionAi. The agents repeatedly play a stage
game and in every iteration each agent chooses an action
ai ∈ Ai. Let us denote the expected utility of an agenti
at time t for an actionai asEi

t(ai). In case of Prisoner’s
DilemmaAi = {C,D} and is same for both the agents.

We now introduce some notations and definitions to build
the framework for CJAL learning. We denote the probability
that agenti plays actionai at iterationt asPri

t(ai). We also
denote the conditional probability that the other agent(j) will
playaj given thatith agent playsai at timet asPri

t(aj |ai).
The joint probability of an action pair(ai, aj) at time t is
given byPrt(ai, aj). Each agent maintains a history of in-
teractions at any timet as

Hi
t =

⋃

ai∈Ai

aj∈Aj

ni
t(ai, aj)

whereni
t(ai, aj) denotes the number of times the joint ac-

tion (ai, aj) being played till timet from the beginning. We
define

ni
t(ai) =

∑

aj∈Aj

ni
t(ai, aj)

Definition 1: A bimatrix game consists of a pair
of Matrices, (M1,M2), each of size |A1| × |A2|
for a two-agent game, where the payoff of the
ith agent for the joint action (a1, a2) is given by
Mi(a1, a2), ∀(a1, a2) ∈ A1 × A2, i = 1, 2.

Definition 2: A CJAL learner is an agent i who at any
time instantt chooses an actionai ∈ Ai with a probability
ft(E

i
t(ai)) where

∑

ai∈Ai

ft(E
i
t(ai)) = 1

and
Ei

t(ai) =
∑

aj∈Aj

Mi(ai, aj)Pri
t(aj |ai)

whereaj is the action taken by the other agent.

Using results from probability theory we can rewrite the
expression for expected utility as

Ei
t(ai) =

∑

aj∈Aj

Mi(ai, aj)
Prt(ai, aj)

Pri
t(ai)

(1)

If we define the probability of an event as the fraction of
times the event occurred in the past then equation 1 takes the
form

Ei
t(ai) =

∑

aj∈Aj

Mi(ai, aj) ∗
ni

t−1(ai, aj)

ni
t−1(ai)

(2)

So, unlike JAL a CJAL learner does not assume that the
probability of the other player’s taking an action is indepen-
dent of its own action. A CJAL tries to learn the corre-
lation between its actions and the other agents actions and



uses conditional probability instead of marginal probability
to calculate the expected utility of an action. In other words,
a CJAL learner splits the marginal probability of an action
aj taken by the other player in conditional probabilities :
Pri

t(aj |ai) ∀ai ∈ Ai and considers them as the probability
distribution associated with the joint action event(ai, aj).
An intuitive reasoning behind this choice of probability dis-
tribution can be obtained by considering each agent’s view-
point. Imagine that each agent views this simultaneous move
game as a sequential move game where he is the first one to
move. Then in order to calculate the expected utility of its
action it must try to find the probability of the other player’s
action given its own action, which is basically the condi-
tional probability we described above.

We now discuss the learning mechanism used to update
the expected utility values. We would like to point out that
it would be unreasonable to use a single-agent Q-learning
scheme for CJAL to update the expected utility of its in-
dividual actions. Because using single agent Q-learning to
estimate payoff from a joint action ignores the correlation
among actions of the participating agents and hence will be
similar to the Q-values learned by an independent learner.
Instead we use a joint action Q-learning for CJAL to es-
timate the expected utilities associated with different joint
actions.

So we rewrite the equation 2 as :

Ei
t(ai) =

∑

aj∈Aj

Qi
t(ai, aj) ∗

ni
t(ai, aj)

ni
t(ai)

(3)

where

Qi
t(ai, aj) = Qi

t−1(ai, aj) + α(Mi(ai, aj)−Qi
t−1(ai, aj))

(4)
α being the learning rate. Note that, if the reward associated
with a particular joint action is deterministic (which is the
case for Prisoner’s Dilemma game we consider) equation 3
degenerates to equation 2. So from now on in our analy-
sis we will use equation 2 as the equation used to calculate
expected utility.

Dynamics of CJAL Learning
Now that we’ve described the learning mechanism, we try
to capture the dynamics of such a mechanism when played
against itself. We consider two CJAL learner’s to play the
Prisoner’s Dilemma game against each other. We try to pre-
dict analytically the sequence of actions they would take
with time.

Exploration Techniques
We use a combination of explorative and exploitative explo-
ration techniques in this paper. We assume that the agents
explore each action randomly for some initial time periods
N and then uses anǫ-greedy exploration. Mathematically,
∀i ∈ 1, 2 and

∀ai ∈ Ai

if t < N

Pri
t(ai) =

1

|Ai|

and fort > N let

a∗ = arg max
ai∈Ai

(Ei
t−1(ai))

then,
Pri

t(a
∗) = 1 − ǫ

and,
∀ai ∈ A − {a∗}

Pri
t(ai) =

ǫ

|A − a∗|

Analysis of CJAL Learning Dynamics
In this setting let us intuitively examine the emergent play-
ing behavior for a two-player Prisoner’s Dilemma game if
agents take purely greedy actions (ǫ = 0) after the ini-
tial N periods. For Prisoner’s Dilemma we haveAi =
{C,D}, i = 1, 2. Let us also denoteMi(C,C) as R,
Mi(C,D) asS, Mi(D,D) asP andMi(D,C) asT . Ini-
tially both the agent assumes that the other agent have an
equal probability of playing any action. IfN is sufficiently
large then we may assume that afterN iterations all the con-
ditional probabilities will be close to 1/2. So for both the
agentsEi

N (C) = R+S
2

andEi
N (D) = T+P

2
. Under Pris-

oner’s Dilemma conditions thenEi
N (D) > Ei

N (C). There-
fore, both the agents will start playing actionD. Now as
they play actionD , Pri

t(C|D) will tend to 0 andPri
t(D|D)

will tend to 1. However thePri
t(C|D) andPri

t(C|C) will
still remain as1

2
. So eventually the expected utilities will be

Ei(C) = (S + R)/2 andEi(D) = P
Now if S+R

2
> P , then the agents will start playing

C. As they both start playingC the Pri
t(C|C) will reach

1 andPri
t(D|C) will reach 0. So nowEi(C) = R and

Ei(D) = P . As R > P they would continue to play C
and hence will converge to Pareto optimality. In essence,
the agents will learn with time that even though stateDC
is very lucrative and stateCD is equally unattractive, they
are almost impossible to reach and will playCC instead,
reinforcing each others’ trust on cooperation.

Unfortunately, the scenario is not so simple ifǫ > 0. We
show below that there exist anǫ0 s.t. for ǫ > ǫ0, CC can
never be achieved. We prove these results below.

Theroem 1: If the agents randomly explore for a finite
time interval N and then adopt anǫ greedy exploration
technique then there exists anǫ0 such that forǫ > ǫ0
CJAl can never converge to Pareto-optimality in a game of
Prisoner’s Dilemma.

Theorem 2: If the agents randomly explore for a finite
time interval N and then adopts a complete greedy explo-
ration technique (ǫ = 0) then CJAL will always converge
to Pareto-optimality if(R + S) > 2P for a Prisoner’s
Dilemma game.

Proof: Let us assume that out ofN initial interactions
each of the four joint actions has been playedN

4
times

(which is a fair assumption ifN is sufficiently large). So the
agents will playC with probabilityǫ andD with probability
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Figure 1: Plot ofφ(ǫ) with number of iteration

(1 − ǫ) asEi
N (D) > Ei

N (C) . We observe that expected
values forni

t(ai, aj) at timet is t ∗ Pri
t(ai, aj). Using the

notations given in section 2 at any time instantt = N + n
the expected value of the actionC andD will then be re-
spectively:

Ei
N+n(C) =

N
4

+ nǫ2

N
2

+ nǫ
R +

N
4

+ nǫ(1 − ǫ)
N
2

+ nǫ
S (5)

Similarly,

Ei(D) =
N
4

+ n(1 − ǫ)2

N
2

+ n(1 − ǫ)
P +

N
4

+ nǫ(1 − ǫ)
N
2

+ n(1 − ǫ)
T (6)

Let us now define a function

φ(ǫ) = Ei
t(C) − Ei

t(D)

Now the agents will chooseC if limǫ→0(φ(ǫ)) is positive.
which gives us:

n

N
(R + S − 2P ) >

(P + T ) − (R + S)

2
(7)

Now RHS of inequality 7 is a positive constant under the
inequalities of Prisoner’s Dilemma and LHS is an increasing
function inn. So LHS will eventually be larger if,

R + S > 2P (8)

which we stated as the condition in Theorem 2.
Now let us observe the nature ofφ(ǫ) as we increaseǫ,

noting that the maximum value ofǫ is 0.5,

lim
ǫ→0.5

(φ(ǫ)) =
(R + S) − (P + D)

2
(9)

which is always negative for all values ofn,R, S, T, P under
the conditions of Prisoner’s Dilemma.

From equations 7, 9 we conclude there exists some
ǫ0, 0 < ǫ0 < 0.5 s.t for ǫ > ǫ0 expected utility for co-
operation can never supersede the utility of defect. Hence,

CJAL will never reach Pareto-optimality, which is the claim
of Theorem 1.

Now if ǫ < ǫ0, Let us assume aftern0 iterationsEi
n0

(C)

supersedesEi
n0

(D). At this point (N + n0) an agent will
chooseD with probability ǫ andC with probability1 − ǫ.
So afterN + n0 + n iterations the expected utilities will be:

Ei
N+n0+n(C) =

N
4

+ n0ǫ
2 + n(1 − ǫ)2

N
2

+ n0ǫ + n(1 − ǫ)
R

+
N
4

+ n0ǫ(1 − ǫ) + n(ǫ)(1 − ǫ)
N
2

+ n0ǫ + n(1 − ǫ)
S (10)

Ei
N+n0+n(D) =

N
4

+ n0(1 − ǫ)2) + nǫ2

N
2

+ nǫ + n0(1 − ǫ)
P

+
N
4

+ n0ǫ(1 − ǫ) + n(ǫ)(1 − ǫ)
N
2

+ nǫ + n0(1 − ǫ)
T (11)

Substitutingǫ = 0 in equations 10, 11, we observe that

Ei
N+n0+n(C) =

N
4

+ n
N
2

+ n
R +

N
4

+ n
N
2

+ n
S

and
Ei

N+n0+n(D) = Ei
N+n0

(D)

Now under the conditions of Prisoner’s Dilemma,
Ei

N+n0+n(C) is an increasing function inn. So
Ei

N+n0+n(C) will continue to be greater than
EN+n0+n(D), which is the second claim of Theorem
2.

We plot φ(ǫ) for 0.011 < ǫ < 0.101, varying n from 0
to 1000 shown in figure 1 and forR = 3, S = 0, T =
5, P = 1 . We observe thatφ(ǫ) decreases with increasing
values ofǫ and is always negative whenǫ is greater than
some particular value.

Experimental Results
In our experiments we allow two CJAL learners play a Pris-
oner’s Dilemma game repeatedly. Each agent has two ac-
tion choices: cooperate or defect. Agents keep count of all
the actions played to compute the conditional probabilities
and update their beliefs after every iteration. We experiment
with different values forR,S, T, P and used two different
exploration techniques namely:

1. Choosing actions randomly for firstN iterations and then
always choose action with highest estimated payoff.

2. Choosing actions randomly for firstN iterations andǫ-
greedy exploration thereafter. i.e. explore randomly with
probability ǫ, otherwise choose action with highest esti-
mated payoff. We take the value of N as 400.

We use payoff values such thatR+S > 2P, R = 3, S =
0, T = 5, P = 1. We plot the expected utilities of two
actions against the number of iterations in Figure 2. We also



 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

E
x
p

e
c
te

d
 U

ti
li
ty

iterations

Variation of Expected Utilities of Actions

Expected Utility for Cooperating
Expected Utility for defecting

Figure 2: Comparison of Expected Utility whenR+S > 2P
andǫ = 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

C
o

n
d

it
io

n
a

l 
P

ro
b

a
b

il
it
y

iterations

Variation of Contional Probabilities

Pr(C/C)
Pr(C/D)
Pr(D/C)
Pr(D/D)
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compared in Figure 3 the values of four different conditional
probabilities mentioned in section 2 and how they vary with
time. We observe from Figure 3 that as the players continue
to play defect the probabilities ofPr(D|D) increases, but
this in turn reduces the expected utility of taking action
D where asPr(C|C) and Pr(D|C) remain unchanged.
This phenomena is evident from figure 3 and 2. Around
iteration number 1000, expected utility ofD falls below that
of C and so the agents starts cooperating. As they cooperate
Pr(C|C) increases andPr(D|C) decreases. Consequently,
the expected value for cooperating also increases, and hence
the agents continue to cooperate.

In the next experiment we continue using the first
exploration technique but choose the payoff values such
that R + S < 2P (R = 3, S = 0, T = 5, P = 2).
We plot the expected utilities of two actions against the
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Figure 4: Comparison of Expected Utility whenR+S < 2P
andǫ = 0

 0

 1

 2

 3

 4

 5

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

E
x
p

e
c
te

d
 U

ti
li
ty

iterations

Variation of Expected Utilities of Actions

Expected Utility for Cooperating
Expected Utility for defecting

Figure 5: Comparison of Expected Utility whenR+S > 2P
andǫ = 0.1

number of iterations. The results are shown in Figure
4. Here we observe due to the conditionR + S < 2P ,
though expected utility of defect reduces to the payoff
of defect-defect configuration, it still supersedes the ex-
pected utility for cooperation. Hence the agents choose
to defect and the system converges to the Nash Equilibrium.

In our final experiment we use the second exploration
technique taking epsilon value as 0.1 and the same payoff
configuration as the first experiment. The results are plot-
ted in figure 5. We observe that though the expected value
of defecting reaches below the value ofR+S

2
, due to explo-

ration, Pr(D|C) also increases, which effectively reduces
the expected utility of cooperation. In effect, players findit
more attractive to play defect, and hence converge to defect-
defect option.



Conclusion and Future Work
We described a conditional joint action learning mecha-
nism and analyzed its performance for a 2-player Prisoner’s
Dilemma Game. Our idea is motivated by the fact that in
a multi-agent setting a learner must realize that he is also
a part of the environment and his action choices influence
the action choices of other agents. We showed both ex-
perimentally and analytically that when played against itself
under certain restriction on the payoff structure it learnsto
converge to Pareto-optimality using limited exploration.On
the other hand IL or JAL converges to the Nash-equilibrium
which is a non-Pareto outcome. We also theoretically de-
rived the conditions for which such a phenomena may occur.
In future work, we would like to observe the impact of CJAL
for n-person general sum games to deduce the conditions for
reaching Pareto-optimality using this learning mechanism.
We would also like to observe the performance of CJAL in
presence of other strategies such as tit-for-tat, JAL and best
response strategies, which does not assume transparency on
opponent’s payoff.
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