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Abstract

Personal agents have been developed that assist a user with information processing
needs by generating, filtering, collecting, or transforming information. On the other
hand internet stores are providing services customized by the needs and interests of
individual customers. Such services can be viewed as “seller’s agents” whose goal is
to push merchandise and/or services on to the users. This leads us to believe that
there is a growing need for deploying “buyer’s agents” whose goal is to best serve
the consumer’s interests. The Internet contains a huge volume of information which
can overwhelm a buyer. The buyers may often make misinformed decisions based on
partial, outdated, irrelevant or incorrect information. We have identified several key
functionalities of buyer’s agents whose goal is to reduce information overload and
improve relevancy and accuracy of information for consumers. In particular, such
agents can make consumers aware of complex interactions between specified pref-
erences and prevailing market conditions, provide differential analysis for decision
support, and use domain ontologies to help the user reformulate queries to improve
satisfaction with query results. We present SAATHI, a prototype buyer’s agent that
demonstrate some of these functionalities in an apartment locator domain.

Key words: Electronic commerce, personal agents, query reformulation.

1 Introduction

The advent and easy accessibility to the Internet has allowed the average
citizen to participate in the global on-line market. One can find e-commerce
sites burgeoning all over the Internet. While some of these sites are targeted
towards business-to-business transactions, many sites are geared for end user
to business interactions [1–3]. E-commerce applications that fall into the latter
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category are of relevance to our discussion. With phenomenal success of e-
commerce sites like Amazon and eBay, the entire business model appears to
have been reinvented. Not only does e-commerce provide new avenues for
selling goods and services and reduced capitals required for marketing and
advertising, it also provides the key to tap into a rapidly expanding customer
base. The netizens and web surfers are empowered by the possibility to browse
the goods and services available from the safe haven of their home and are
increasingly comfortable in buying goods and services without the assurance
of having checked out the offering ‘in person’.

The Internet, however, also generates an abundance of information which is of-
ten overwhelming. Search engines return too many links in response to queries.
This limits their usefulness as it becomes difficult for the user to differentiate
between relevant and irrelevant data. Typical e-commerce sites are developed
by merchants and retailers whose goal is to profit by selling as many products
and services as possible to the consumer visiting their sites. In addition, the av-
erage consumer may be inundated by the volume and diversity of information
available on the web and may not have the patience or the time to search and
shift through all the available information to make a judicious choice. Often
word-of-mouth recommendations, which may have been outdated by a rapidly
changing market, will be used to make purchasing decisions. Sometimes the
consumer may not be aware of the fact that minor changes in queries may pro-
duce a much more profitable choice. All of these factors taken together suggest
that though the Internet, and in particular the searching capability provided
by WWW portals, can lead a consumer to an e-commerce site of interest to
the user, the user can still benefit from additional tools and techniques to
select products and services.

The Internet has also enabled the development and deployment of software
agent based e-commerce applications [4,5] including sites that allow users to
buy and sell goods [6], auction houses [7,8] etc. As a result, agent technology
has caught the attention of both application developers and system design-
ers [9] over the past few years. Agents are viewed as a useful metaphor both for
developing desktop software designed to assist a particular user [10], as well as
for internet-based server-side software that enables e-commerce [4]. The first
wave of agents to catch our attention were those that enabled us to skip some
of the grunt work, e.g., filtering e-mail [10], scheduling meetings [11], collect
newsgroup articles [12], etc. Most of these were desktop applications. With
the rapid explosion of the internet and the World Wide Web a different class
of agents came to the fore: agents that can gather and collate information on
behalf of their user [13]. With simple queries, the user could now perform pow-
erful searches that would have previously required considerable time and effort
on his/her part. Personalized web-page recommender systems [14,15] provide
a partial solution to this problem as they can suggest web pages of interest
to a user based on his/her query and usage patterns [16–19]. For users with
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multiple and overlapping interests, opportunistic exploration [20] provides the
chance to view products in which he/she might be interested in based on last
few product selection, long term and demographic interests. Collaborative fil-
tering mechanisms have also been developed using which users can obtain or
view choices of similar users [21,22].

The remarkable growth in agent-oriented internet-based applications is en-
couraging. However, most of these applications appear to open up new pos-
sibilities or choices for the user without providing much guidance or help
about how best to use this additional information. Though there does exist
considerable research in comparison shopping agents [23,6], these agents are
not designed to educate the customers about the changing marketplace or the
relationships between user preferences. Also the emphasis in most of these sys-
tems is on finding the cheapest price for a product. We are more interested in
providing guidance and information to support the product selection process.

Our goal is to further enhance the scope of software agent applications by
developing agents whose purpose is to educate the user to become a more
informed consumer. These agents will serve the interest of the user by un-
derstanding the user’s goals and will recommend products/services or suggest
modification to user queries or requirements that is more likely to produce
results that improves user satisfaction. In particular, these agents will have to
educate the user both about possible interactions between his/her preferences
for different features and the dynamics of a rapidly changing marketplace.

We now use a few example scenario to illustrate our proposed functionality of
a buyer’s agent:

Product feature Selection: User A was looking for a lawn mower with 22”
swatch, at least 4.5HP Briggs & Strattan gas engine, mulching option, and at
least two years manufacturer warranty in a price range of less than $300. A
shopping agent can perhaps find one or more such product. But consider the
scenario that all but one manufacturer X, has just entered this market and
hence has no product history to demonstrate quality or reliability. provide
warranties of only up to a year. In this case the user requirement of a 2-
year warranty will eliminate all other options and restrict the results to
only the products offered by manufacturer X. This may also result in an
escalated price (even though it is still within user specification, it does not
necessarily mean the user will be willing to pay 25% more for example for the
extended warranty period), or elimination of other features offered by other
manufacturers. The “buyer’s agent” should inform the user of the implied
constraint “Warranty > 1 year ⇒ Manufacturer = X”. Note that
we are not arguing that the agent should ask the user to change specified
preferences. Our position is that by providing such additional information,
the agent can inform the user about possible consequences of his/her choices.
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The user can then choose to relax or not relax his/her preferences in the
light of this new information. In addition, if the user wants the results to be
ranked by some attribute, e.g., price, the agent can do “what if” type queries
and suggest the reduction in price the user can get by relaxing one or more of
the stated preferences. Such differential analysis will allow the user to best
restate the query if he/she decided to relax some of his/her constraints. This
analysis can significantly improve consumer understanding and awareness
of the marketplace.

Suggesting alternate products : User B was interested in buying a portable
CD player as a present to a friend. This friend is an avid walker/jogger and
B thought that a portable music player would make a great present for the
friend. On hearing B’s gift idea, a common friend suggested that in place
of the portable CD player, B should consider an MP3 player, a lightweight
digital music player that can store hours of digital-quality music. This prod-
uct was recommended because it was easier to carry, has no moving parts
and never skips. These features are particularly useful for listeners engaged
in physical activities like jogging. Even though this product costs more, B
found it to be more appropriate because of its features. The friend was able
to suggest the alternate product because of an understanding of B’s goal. It
may be possible to automate such user goal recognition for specific scenar-
ios. Automating this process in general without significant user guidance is
probably infeasible with current technology.

One can list a number of such scenarios where the consumer’s initial choice or
preference can be modified in the light of new information. The assumption
that the average consumer has all the latest information at his/her fingertips
is unfounded. On the contrary, rapidly changing market conditions imply that
it is next to impossible for the average consumer to keep track of the latest
options, deals, package offerings, etc., all of which can influence his/her final
choice of what he/she is going to buy and at what price. We proposed a capable
buyer agent, SAATHI, that can keep track of changing market conditions and
make the user aware about the possibilities and opportunities in the market 1 .
This buyer agent empowers the user to make more informed and hence more
confident decisions to improve satisfaction.

Our proposed agent, SAATHI, provides services orthogonal to those provided
by comparison shopping agents in that the emphasis is less on retrieving prod-
ucts matching user descriptions and more on informing the user about the
interactions between constraints in that description and the marketplace. For
example, in addition to returning products matching the constraints in the
user query, SAATHI can present related products and/or products that can
be obtained by relaxing some of the constraints in the user query. This draws

1 In this paper, we use the term market synonymously with the information envi-
ronment of the agent.
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the attention of the user to the possibilities which could have been unexplored
otherwise and thus broaden scope of more satisfying or favorable selections.

We have developed SAATHI as an instance of a buyer’s agent for the apart-
ment locator domain. It analyzes constraints in user queries to infer implied
constraints based on current market condition [24]. Later in Section 3, we de-
scribe its current functionalities and other functionalities that we are currently
working to add to the system.

The rest of the paper is organized as follows: Section 2 presents techniques
and systems related to that discussed here; Section 3 formalizes the concept
of static, dynamic and implied constraints in user queries; Section 4 presents
the architecture of SAATHI; Section 5 introduces the example domain used
to illustrate our system; Section 6 discusses implementation issues of SAATHI

and presents sample interactions to illustrate its functionalities; and Section 7
summarizes the discussion and identifies possible extensions to the system
proposed.

2 Related work

In the last few years the volume of information available to a common user on
the Internet has increased exponentially. But it is very difficult for the average
user to find all relevant and useful information given the overwhelming amount
and diversity of information sources, content, presentation format, etc. There is
significant research in electronic commerce to empower the user to take right
decisions. Intelligent automated agents are deployed to process information
on behalf of the user. The burgeoning interest in agent-based systems and its
applicability has produced a number of techniques for intelligent information
retrieval.

One application of agent based systems is to increase the quality of information
retrieved from the Internet. Typical search engines return too many links in
response to user queries, most of which are irrelevant to the user. Web-page
recommender systems try to alleviate some of this problem by finding pages of
interest to a user based on his/her query and usage patterns [18,19]. Another
approach used to facilitate user access to pertinent information is to trace
the user profile at a Web store and customize the pages according to that
profile [25]. In this approach the description of the store catalog is adapted
to reflect the preferences of the users. Hyper-textual pages are dynamically
generated by applying personalization rules to user models based on activity
profiles.

A recommender system is usually used by the E-commerce sites to lure the
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user with other offers that he/she may be interested in [26]. Recommender
systems can be either content-based or collaborative filtering based. In the
content-based approach, users are categorized by their query and usage pat-
terns and web pages with contents similar to those visited by the user are
recommended by the system [18,19]. In the collaborative filtering approach,
the system recommends based on similarity among users. The system cate-
gorizes the user and suggests similar options that previous users belonging
to the same category opted for [27,28]. The Yoda system combines collabo-
rative filtering and content-based querying for providing product recommen-
dations [29]. Fast online recommendation is obtained by offline training using
genetic algorithms on data from, among other things, user navigation pat-
terns. The Helpful Online Purchase Environment (HOPE) system uses data
mining to generate suggestions predicated both on the user and the content
of the web page [30]. HOPE uses tag fields with products to organize them
into a hierarchical structure and uses a nearest neighbor algorithm to find
related products based on the customer’s purchase history. A different ap-
proach is suggested by Wei et. al. [31,32]. They have proposed a market based
recommender system to incorporate multiple heterogeneous recommendation
approaches. Here, different agents may have different recommendations and
they compete in a market-based protocol to propose their recommendation to
the user.

A different approach is that of “opportunistic exploration” [20]. This concept
is based on the premise that users have multiple and overlapping interests,
exposure to appropriate items can appeal to a user’s latent interests, active
interests may be subdued if users are not exposed to their items of interest
soon enough, and users prefer simple navigation of online stores to search
for their items. The purpose of the system is to influence the short and long
term interests of users shopping at an online store by exposing them to a
dynamic environment of items that are updated through interaction and to
assess his/her interests.

3 User constraints and market conditions

We now present a formal model to represent constraints explicitly specified in
a user query and the nature of results returned by querying the current market.
The basic assumption in our model is that the environment can be modeled by
a relational data model [33]. We believe that the relational model is sufficiently
general to effectively model the data requirements of most application domains
of interest to us. In the following discussion, we will use the term ‘database’ for
any collection of data, irrespective of whether it is stored locally on the user
site or distributed over several sites on the network or the Internet. We will
not concern ourselves with the implementation of the relational model (and we
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have no control over how the data will be implemented in databases across the
network), and hence use a universal relation schema R(A1, A2, . . . , An), where
R is the name of the domain, e.g., Resorts, and each Ai correspond to an
attribute in the domain, e.g., name, category, location. A particular element
of the relation, e.g., a given resort, is denoted by an n-tuple t = 〈v1, v2, . . . , vn〉,
where ∀i, vi ∈ Domain(Ai). For example, a given resort is completely described
by a vector of values corresponding to each of the resort attributes.

A typical user query consists of a conjunction of a number of logical tests,
where each logical test is a constraint on the range of values a particular
attribute can take. Such a query can be formally specified as follows:

(A1 cond1 a1) ∧ . . . ∧ (An condn an),

where ∀i, condi is a logical condition in the set {=, 6=, <,>,≤,≥, In, #}. For
the In condition, there are two possibilities:

• If Ai is an ordinal attribute, the In operator tests for values in a contigu-
ous range, and ai stands for a range [vlow, vhigh], where vlow < vhigh and
vlow, vhigh ∈ Domain(Ai),
• If Ai is a nominal attribute, the In operator tests for membership of values

in a given set and ai stands for a set of values {vi1 . . . vik} where ∀j, vij ∈
Domain(Ai).

For other operators, ai ∈ Domain(Ai). The # condition is a don’t care oper-
ation and will match any value. Other symbols have their standard interpre-
tation. As each logical test except the don’t care condition limits the possible
set of values for an attribute for a match, we view each such test as a con-
straint specified by the user: Ci ≡ (Ai condi ai) where each condition is limited
to the set {=, 6=, <,>,≤,≥, In}. Since the conjunction between the tests are
implied and don’t care conditions do not affect query results, for brevity we
will represent a user query by only the set of constraints: Q = {Ci}, i.e., we
will drop the tests containing the # condition. For example, the query from
a user searching for a ski resort in either Colorado or Alberta for 3-5 days
at an average room rate of less than $200 can be represented as {(Type =
‘ski′), (Location In {Colorado, Alberta}), (Duration In [3, 5]), (RoomRate <

200)}.

In response to a user query, all items in the database that satisfies each of the
constraints specified in the query should be returned. It is well-recognized that
the attributes in a domain are not mutually independent. Hence constraints
imposed on a given set of attributes might constrain the values of other at-
tributes in the results of a query. We are particularly interested in such “im-
plied constraints” as an average user may not be aware of these additional
constraints implied by the constraints (s)he explicitly specified in a query. We
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believe that identification of such implications will improve the user’s aware-
ness and understanding of the market and can allow the user to reformulate
the original query to better reflect his/her interests and preferences.

3.1 Static and dynamic constraints

In addition to domain, key, and integrity constraints, each relational database
also satisfies a set of functional dependencies (FDs). The latter is of particu-
lar interest to us as it specifies relationships between different attributes that
must always hold. For example, in the resort domain a typical FD would be
Location → Tax Rate which implies that any two resorts located in the
same location will also have the same tax rate. The FDs in a given domain
correspond to static constraints that hold for the lifetime of the database. We
do not expect that an average user to be aware of most of such static con-
straints in the domain, but can benefit from such knowledge. Additionally, the
user can significantly benefit from the knowledge of other, possibly temporary,
relationships currently existing in the database. For example, the relationship
represented by the rule “Location=Bahamas ⇒ Cancellation-charge = No”
may hold at a given point in time, though it may not have been true in the
past or may not be true in the future. Such dynamic constraints (DCs) differ
from FDs in two major ways:

(1) DCs are of the form (Ai condi ai) ∧ (Aj condj aj) ∧ . . . ∧ (Ax condx ax)⇒
(Az condz az), whereas FDs are of the form AiAj . . . Ax → Az. A set of
FDs are defined on a given database schema, S. A given FD specifies
that if the attributes from S on the LHS of the FD have the same values
for two database tuples (items), the attribute on the RHS of that FD
must have the same value in those tuples. DCs are implication rules that
constrains attributes on the RHS of the rule in items which match the
LHS of the rule. The conditions in the DCs are more general than the
implied equality conditions in FDs. Whereas DCs constrain the attribute
values in a given item, FDs constrain attribute values in item sets.

(2) Any legal database state or instance, IS , must satisfy all FDs defined
on the associated database schema, S. Whether a DC, D, holds or not
on a given database, however, depends on the current database instance,
changing over time with insertion and deletion of records. Hence, these
constraints are dynamic.

Since the relationships captured by conjunctive rules can aid the user’s under-
standing of market dynamics, we propose that SAATHI will infer such rules
periodically by analyzing market data. Note that though such inference from
data is not justified for inferring FDs because current relationships do not
imply permanent relationships, such inference do serve our purpose of keeping
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abreast with market conditions.

3.2 Implied constraints

The relevant technical question then is how to infer relationships of the above
type by inspecting the current instance of a relation. There exists several data
mining approaches for inferring relationships in data. Our goal is to present
these relationships to the user in the form of easy to comprehend rules and
hence we did not consider mechanisms like neural or Bayesian nets. For ease
of use, we use only rules corresponding to Horn clauses, i.e., rules of the form
(Ai condi ai) ∧ (Aj condj aj) ∧ . . . ∧ (Ax condx ax) ⇒ (Az condz az) where the
LHS can be written as a conjunction of constraints and RHS consists of a
single constraint. Each such rule r, can then be represented by a pair (Lr, Cr),
where Lr is the set of constraints on the LHS and Cr is a single constraint on
the RHS.

Several rule learning mechanisms have been developed in the machine learning
literature that can possibly be used to infer such rules [34–36]. We believe
that propositional rule learners will be sufficient for most domains, and hence
did not use systems that can learn first order rules, e.g., FOIL [36]. In our
implementation, we used the rule generation facility associated with C4.5,
perhaps the most well-known decision tree learning system [37].

Let RIS be the set of rules learned given a database instance IS . If compu-
tational time and costs were negligible, such rule learning procedures could
be run in response to each user query. Given finite computational costs, how-
ever, rules should be learned periodically with the frequency chosen so as to
always have up-to-date learned rules. When a user poses a query, Q = {Ci},
the constraints in the query can be used to match the antecedents of the
latest learned rules. The consequents of the set of the matched rules consti-
tute implied constraints given the user query and the current relationships in
the market database as captured by the learned rules. Note that a rule, r is
matched if all the constraints on the LHS, Lr is contained in a query. The set
of implied constraints for a query Q given the learned results RIS can then be
written as following 2 :

C̃Q,RIS
= {Cr|r ∈ RIS ∧ Lr ⊆ Q}.

2 We would like the implied constraints to be identical to the set of dynamic con-
straints D holding on the database instance at the time of the query. In prac-
tice though, limitations of inductive rule learning schemes, pre-processing of the
database instances for learning schemes, time difference between rule updates and
query, etc. mean that the implied constraints are approximations of the actual dy-
namic constraints.
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For example, if we reconsider the lawn mower example used in the “Intro-
duction” section, when the user asks for 2-year warranties, this can generate
the implied constraint that the manufacturer of all such products is X. This
information may make the user relax some of the constraints in the original
query. Our position is that being made aware of these additional implied con-
straints, which the user might not have been aware of, the user can make more
informed decisions about purchasing goods and services of interest.

3.3 Constraint relaxation for optimization

Another aspect of our work involves providing differential analysis of the user
query to present the user with an analysis of how each individual constraint
in the query influences the set of results returned. We presume that in gen-
eral the user’s goal is to optimize a given criterion, e.g., cost of a vacation
package. The goal here is to help the user optimize that decision criterion,
e.g., maximize area or minimize rent in the apartment locator domain. If the
user chooses any one of these criteria, a differential analysis will identify the
constraint or constraints in the original user query to be altered/relaxed to
maximally improve the quality of the query results. This facility allows the
user to immediately understand different “what-if” scenarios which can allow
the user to identify constraints that would be most beneficial to relax. For
example, the user may find it preferable to relax the constraint of covered
parking to get a 10% reduction in rent.

To perform such differential analysis we use the set of constraints in the user
query. We create a set of queries by dropping exactly one of the constraints
in the set at a time. As above let Q = {Ci} be the user query. Let QC̄ be
the query where the constraint C has been dropped from the query Q, i.e.,
QC̄ = Q\{C}. Then the set of new queries to perform differential analysis,
DQ is given by: DQ = ∪C∈QQC̄ . We also ask the user to provide a criterion
to optimize. Typically this is the value of one of the attributes of the domain,
say A. Without loss of generality, we assume that the user wants to minimize
the value of A in the items matching the query.

Given a database instance IS , let M
q
IS

be the set of matches returned for the

query q, and t
q,A
IS
∈ M

q
IS

be the tuple or item in the result with the minimal

value for A, i.e., t
q,A
IS

= arg minA{t(A)|t ∈ M
q
IS
}, where t(A) represents the

value of attribute A in tuple t. We denote by v
q,A
IS

= t
q,A
IS

(A). the corresponding
minimal value. For the sake of brevity, we will drop the IS subscript where
the database instance is known from context. We note that for any constraint
C ∈ Q, as QC̄ ⊂ Q, MQ,A ⊆ MQC̄ ,A, i.e., the same or more matches are
returned with a relaxed query, and vQ,A ≥ vQC̄ ,A, i.e., an equal or a smaller
(better) value for the minimizing criterion is returned with the relaxed query.
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The lowest value for the criterion specified A, given the user query Q and the
current database instance, is then vQ,A for the item tQ,A. Now, we query the
database with each of the relaxed queries in DQ to obtain the sets T Q,A =
{tq,A|q ∈ DQ}, the set of items with the minimum values for A for each of
the relaxed queries, and V Q,A = {vq,A|q ∈ DQ}, the set of the corresponding
minimum values. In response to query Q = {Ci} and the optimization criterion
A, we return both the pair (tQ,A, vQ,A) and a set of pairs {(tQC̄ ,A, vQC̄ ,A)|C ∈
Q}. The user can then choose to relax any constraint C ∈ Q and obtain a
reduction of vQ,A − vQC̄ ,A in the value of attribute A by choosing the item
tQC̄ ,A, returned with the relaxed query after dropping constraint C, rather
than the item tQ,A returned with the original query.

Let vA = minq∈DQ
{vq,A} be the minimum of the values that can be obtained

from tuples matching queries with relaxed constraints. QvA = arg minq∈DQ
{vq,A}

is the corresponding query and the constraint to be relaxed is Cm = Q−QvA .
The user may or may not choose to relax this or any other constraint. This
analysis, however, does present the user with a detailed picture of the effect of
each constraint in the original query on the optimizing criterion. We believe
such analysis will enable the user to take more informed decisions and improve
his/her utility.

Note that the above analysis considers only queries obtained by dropping
exactly one constraint from the original query at a time. It is of course possi-
ble to perform a more extensive, and computationally expensive, differential
analysis by dropping all possible subsets of the constraints in turn, i.e, use
DQ = ∪R⊂Q(Q − R). We believe that such exhaustive analysis might be an
overkill and can even overwhelm the user with too much information for re-
alistic domains with more than a handful of attributes. Hence, though such
an elaborate analysis can capture a more detailed snapshot of the domain
dynamics, we have not pursued this option.

4 System architecture of SAATHI

We now present brief descriptions of the different modules in the architecture
of SAATHI, our proposed buyer’s agent (see Figure 1):

Interface: The interface allow the user to present a structured, constrained
query in the application domain. This query is forwarded to the data re-
trieval engine and to the analysis module. Results returned from both these
modules are displayed back to the user in an easy-to-browse format.

Data retrieval engine: The data retrieval engine’s purpose is to query the
market and gather data as required by the user or the other modules. The
engine can be a database query engine in the situation where all the informa-
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Fig. 1. The architecture of SAATHI.

tion resides in a local database. It can also be as complicated as an Internet
based distributed information gathering mechanism when data resides at
multiple remote sites.

Market constraint generator: The market constraint generator uses the
query engine to retrieve a sizable or representative portion of current data
in the market. This retrieved data is then mined to unearth any significant
existing relationships. Whereas in some domains a simple dump of the rel-
evant relations may be sufficient to gather needed data, in other domains
sophisticated statistical sampling may have to be performed to gather rep-
resentative data from non-local sources.

Constraints matcher: The constraints matcher contains a rule-matching
mechanism that matches the constrained user queries with the inferred rules.
The result is the generation of all rules that match the constraints of the
user query. The consequents of these matched ruleset provides the implied
constraints over and above the constraints present in the user query.

Analysis module: The analysis module of SAATHI calls the constraints
matcher to generate the implied constraints from the user query. It can
also perform other kinds of analysis, e.g., differential analysis by relaxing
some of the constraints in the user’s query. This will enable the module to
make specific recommendations to the user about how best to relax con-
straints in the query to obtain satisfactory results. If provided with a rich
domain ontology, the analysis module can also be used to map a user query
into a more appropriate query to return closely related product/service in-
formation [38].
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5 The apartment locator domain

To evaluate the feasibility and usefulness of the “buyer’s agent” concept, we
chose two disparate domains for initial exploration: a vacation resort selection
domain, and an apartment locator domain. In this paper, we report on our
experience with the latter of these two domains. The relational model for
the apartment location domain has 10 attributes, e.g., Rent, NumBedrooms,
DepositAmount, WD (Washer-Drier), etc. There exists e-commerce sites using
which one can search for apartments in a particular city or region [39,40]. We
visualize SAATHI to be an agent “higher up the food chain” [41] which can
query such sources through its data retrieval engine.

6 System in use

In this section we will discuss our proposed system, SAATHI, working in the
apartment locator domain in the city of Tulsa.

6.1 Implementation issues

For the implementation, we limited our domain to the city of Tulsa. The data
about Tulsa apartments is collected by an automated data retrieval engine
from several web sites [39,40]. The data collected in this phase is parsed and
form an apartment database. The next step was to mine this database to gen-
erate the rules. We used the C4.5 system [37], a popular decision tree learning
mechanism, to generate the rules that capture the existing relationships in
the data. To do this, we ran the rule generator many times, once for each of
the attributes in the domain. Each attribute was chosen once as the target
attribute, and the rest of the attributes were used to predict the values for
this attribute. We had to pre-process the raw data for this stage. In particular,
when continuous attributes were used as the target attribute we had to dis-
cretize them as the rule generation procedure works with only discrete-valued
target attributes. For example, when we used Rent as the target attribute, we
defined several ranges into which the apartments were classified, e.g., 500–599
was defined as midrange (MR). When Rent was used as an attribute to classify
another target attribute, however, the continuous values were used, e.g., 450
rather than MR.

The rules learned were not necessarily 100% accurate. We decided to use rules
that even though not completely accurate, were accurate in a large percentage
of cases they matched. We have used rules with accuracy above a threshold
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LEARN-DOMAIN-RULES(Attributes, Examples, Threshold)
Rules← φ

For each A ∈ Attributes

A− ← Attributes\{A}
rA ← LEARN-RULE-SET(A,A−, Examples)
rA ← ELIMINATE-INACCURATE-RULES(rA, Threshold)
rA ← DROP-NEGATIVE-CONDITIONS(rA)
Rules← Rules ∪ rA

Rules← ELIMINATE-DUPLICATES(Rules)

Fig. 2. Algorithm for generating all rules in a domain.

of 90%. This means that the implied constraints were not without exceptions,
but the exceptions were small enough in number to warrant the presentation
of this constraint. We observed that if the rule performance threshold was
lowered below 80%, too many rules were being generated. These ‘not very
accurate’ generalizations are more likely to confuse rather than aid the user.

Typical rules learned by the process described above include the following:

Rent < $400⇒ CoveredParking = N,

which means apartments with rent less than $400 do not have covered parking;

Bedroom = 2 ∧ Area > 1000sqft ∧ CoveredParking = Y ⇒ Rent > $700,

which means apartments with 2 bed rooms, area more than 1000 sq ft and
covered parking has rent more than $700.

The algorithm for rule generation is given in Figure 2. The LEARN-RULE-
SET function can be any rule learning algorithm; we have used C4.5 in our
implementation.

Note that rules are not necessarily causal. The learning process did unearth a
lot of patterns that we were not expecting. It is important to recognize that
these patterns are necessarily impermanent and hence it may not be useful to
search for any fundamental long-lasting correlation between the antecedents
and consequents of the learned rules.

A post-processing step that we decided to invoke, DROP-NEGATIVE-CONDITIONS,
removed negative conditions from the rule. The reason for removing negative
conditions was that for most features it is unlikely that the user will spec-
ify a negative constraint; e.g., we do not envisage user’s not wanting covered
parking space. Alternatively we could have defined the matching process such
that a query with no constraints for an attribute will also match a rule which
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has a negative constraint. In the following we present a rule before and after
post-processing:
Rule before post-processing:

(Rent = $600) ∧ (CoveredParking = N)⇒ FitnessCenter = N,

Rule after post-processing:

(Rent = $600)⇒ FitnessCenter = N.

The rule with the relaxed constraint is also tested for accuracy and is substi-
tuted for the original rule only if its accuracy is above the chosen threshold.
This constraint-dropping process generated two types of redundancies in the
resultant rule sets: identical rules, and rules that were more general than other
rules. So far, we have eliminated only duplicate rules. Since specific rules are at
times more accurate than their more general counterparts, we have not elimi-
nated them from consideration. This redundancy will also be useful when the
user can dynamically change the threshold for the accuracy of rules to be used
in identifying implied constraints.

The resultant rule base that we obtained through the above-mentioned process
has a little more than 100 rules. This number depends on the rule accuracy
threshold that we have selected.

6.2 Differential analysis

The result screen of SAATHI in response to a user query is presented in
Figure 3, where the three rightmost frames present results of the query. The
query is shown in the first frame while the fourth frame shows the implied con-
straints. All the items that match the query are shown in the second frame. In
the third frame we see the optimal match for dropping each of the constraints.
The corresponding option can be viewed by clicking on the constraint that is
relaxed. For example consider the case where the user wants to obtain min-
imum rent and provides constraints of rent < $500, area > 600 sq. ft., 1

bedroom, deposit < $150 and requires washer-dryer. In additional to the full
query, SAATHI also finds the response to additional queries dropping each of
the constraints. That is, for each of the constraints in the original query, we
now know what is the minimum rent that can be obtained if we drop that
constraint. Finally the set of constraints in the original query is sorted in as-
cending order by these values, which gives a list of constraints the user should
consider relaxing in order if he/she wants to get a lower rent than what was
returned with the original query. We see that the original query returned a
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Fig. 3. The result screen of SAATHI.

minimum rent of $399, but dropping the area constraint can further lower the
rent to $344. The user can then decide whether the extra space is worth the
$54/month in rent.

The results returned also include a list of apartments satisfying the original
query, and another list containing the set of implied constraints given the
prevalent market conditions and the user constraints. One implied constraint
for this particular query is that covered parking is not available. The user can
click on the constraint to see which of the constraints in the original query
implies this constraint, and based on that information can further modify the
original query.

7 Conclusions

In this paper, we argued for the usefulness of a “Buyer’s agent” which will
enable an average user to make more informed choices while choosing products
or services from electronic commerce sites. We posit that the average consumer
finds it difficult to keep tabs on market conditions, and can look for features
in a product he/she is interested in purchasing that can restrict the set of
choices, increase price, etc. We proposed a prototype buyer’s agent, SAATHI,
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whose goal is to keep abreast with the prevailing market condition and to
inform the user of implied constraints, relative effects of different constraints,
alternative products, etc.

We identified the scope of such a buyer’s agent, proposed an architecture to
deliver the suggested functionality, described the implementation in an apart-
ment location domain, and presented sample interactions with the system.
Such a system can be augmented to add persistent queries, in which case, the
user can be informed of particular opportunities that he/she had previously
queried but have become available at a later time. Another useful modifica-
tion would be to present “result densities” as part of the differential analysis
process, where the distribution of the matches for the optimizing criteria is
presented for different query relaxations. Such distributions will provide the
user a clearer view of how the different constraints in the query are influencing
the set of items matched.

The vision of a buyer’s agent is a powerful one: a knowledgeable well-wisher
helping the user to select the product or service that is most satisfying for the
user. We have presented our initial steps towards that vision.
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