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ABSTRACT
Multiagent researchers have worked on the problem of de-
termining optimal contracts between self-interested agents.
In particular, Sandholm et al. [1, 8] have both theoretically
and experimentally studied the necessity and usefulness of
different contract types under the assumption of individu-
ally myopically rational contracting. We study a variant of
sequential contracting where the goal is to maximize social
welfare through a fixed-length sequence of individually ra-
tional contracts. The space of possible contract sequences
is exponential. We compare a greedy deterministic heuristic
with a stochastic genetic algorithm based approach for this
optimal sequential contract selection problem. We focus on
sub-additive domains where individually rational contracts
are feasible with side payments. We show that the GA-
based approach consistently outperforms the deterministic
heuristic by generating larger social welfare.

1. INTRODUCTION
Research areas such as contract protocols, coalition struc-

tures, argumentation-based negotiation and combinatorial
auctions have generated wide spread interest among multi-
agent system researchers [6, 7, 10, 13]. An important objec-
tive of all these approaches is to allocate or re-allocate re-
sources among agents or agent groups so that performance
is optimized (in terms of minimizing cost of performing a
set of tasks or enhancing the payoff received agents).

In this paper, we are interested in the identification of
an optimal sequence of contracts by which a group of agents
can decrease their cost of performing allocated tasks. We as-
sume the cost of performing a task depends on other tasks in
the allocation. Thus an agent can contract out a task such
that the decrease in cost for the contractor agent is less than
the increase in cost of the contractee agent. The contrac-
tor agent can then be better off even after compensating
the contractee agent for the cost of the task that is being
transferred. We assume that a contract is executed only if it
benefits both the contractor and the contractee, i.e., agents
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are individually rational. Such mutually beneficial contracts
situation is feasible in sub-additive domains.

The space of possible contracts is exponential in the num-
ber of agents and the total number of tasks. Sandholm et

al. [8] have studied the necessity and usefulness of different
contract types under the assumption of individually myopi-
cally rational contracting, i.e., a contract is accepted only if
it is beneficial to both parties (this is myopic because an in-
dividual contract that produces a loss can, in the long term,
lead to a contrat with a larger total benefit). In particular,
they observe that if the allowed contract types do not in-
clude the fully general OCSM contracts, then individually
rational contracts may not be found to reach globally op-
timal allocations. Sandholm’s work, however, provides no
guidelines for selecting a sequence of OCSM contracts to
produce optimal allocations. Their experimental work on
evaluating original (O), cluster (C), swap (S), and multi-
agent (M) contracts evaluate an exhaustively enumerative,
rather than heuristic, scheme for sequencing contracts [1].
We believe that it is necessary to develop a better charac-
terization of the usefulness of simple contract types under
constraints on time and number of task exchanges feasible.
The motivation behind such a study is to develop insight on
the best possible sequence of contracts that can be achieved
given the restrictions.

In particular, we are interested in a variation of the opti-
mal contracting problem where the number of contracts is
fixed. Each contract is a transfer of one task from a con-
tractor to a contractee, which is an O contract. The optimal

n-sequence O contracting problem involves the generation
of the optimal sequence consisting of n individually rational
O contracts that minimizes the total cost incurred by all
agents to process their final allocations. Minimizing total
cost is equivalent to maximizing the total welfare in the sys-
tem. Optimality in this context refers to the best possible
contracting sequence under the bounds specified.

We evaluate two heuristic algorithms, a deterministic and
a stochastic version, for selecting the sequence of n indi-
vidually rational O contracts that maximizes social welfare
given arbitrary initial task allocations among agents. The
deterministic algorithm is a greedy procedure for selecting
the maximal cost reducing individually rational contract.
The stochastic version has been implemented using an order-
based genetic algorithm (GA) [2] where each GA structure
selects a fixed set of contracts. Our results show that under
various combinations of tasks and agents, the stochastic con-
tracting protocol produces significantly larger social welfare
gains. The metric we have used to quantify the performance



of these protocols and to compare between them (the met-
ric that we would like to maximize for both the protocols)
is the welfare obtained after a sequence of contracts, where
welfare is the net difference of costs between the final and
the initial allocations. The GA searches a number of con-
tracting sequences in parallel to find the optimal solution.
Apparently, this implies that the GA-based approach is not
comparable to the deterministic heuristic that searches in a
limited sequence of O-contracts. It should be noted, how-
ever, that the deterministic heuristic uses knowledge about
the costs of each agent’s task allocation to eliminate a large
number of possible contracts from the entire set of contracts
possible. The GA, on the contrary, uses random sampling in
the set of possible contracts without any knowledge about
the contracting costs of the agents. Thus, though the GA
searches in a larger set of possible solutions compared to the
deterministic heuristic, the search is unbiased and hence, po-
tentially runs over a non-trivial amount of redundant sample
solutions.

Both of the algorithms studied here are centralized in na-
ture in terms of the knowledge of individual task alloca-
tions and cost metrics of individual agents. While this is
a limitation of the current work, our goal here is to iden-
tify whether even centralized heuristic algorithms exist to
effectively search the exponential space of possible contract
sequences. To accommodate the constraint that a central-
ized arbiter will not be able to enforce contracts on indi-
vidually rational agents, we require that each O-contract in
the n-sequence is individually rational. Therefore, for each
of the contracts identified by the centralized algorithm, it is
beneficial for the participant agents to accept the task ex-
changes with corresponding accompanying side payments.
This means that only those contracts will be selected that
are acceptable for rational agents. This is critical as a cen-
tralized arbiter will not be able to enforce contracts that
are not acceptable to at least one of the participant agents.
In spite of the limitations of the centralized framework, we
believe that this work is important to create a baseline for
measuring the performance of future distributed contract
sequencing heuristics. The importance of this work can be
further argued against the backdrop of almost a complete
lack of effective heuristics for identifying mutually beneficial
contracts.

2. HEURISTIC ALGORITHMS FOR SELECT-
ING CONTRACTS

We assume an initial allocation of a set of tasks, T , to M

agents in the form of a partition of the set of tasks: T =S
i∈M

Ti and ∀i, j, Ti ∩ Tj = φ, where Ti is the set of tasks
assigned to agent i. The cost of an allocation to an agent i

is given by a cost function, gi(Ti).
Sandholm and his students [1, 8] have studied several con-

tract types for exchange of tasks between myopically indi-

vidually rational agents to maximize social welfare. Of these
contract types, we use in our work only the O-contract (for
original contract) which involves one agent allocating one
of its tasks to another agent. In Sandholm’s work such a
contract is myopically individually rational only if the cost
of the task being transferred is less for the recipient than for
the giver. The recipient is compensated by the giver in the
form of a side payment to cover the cost incurred in process-
ing the task. As a result both the giver (because the cost to

it for processing the task is less) and the recipient (because
it gets a payment for the task that is higher than the cost
of processing the task) benefits, and global welfare is im-
proved. The contracting domain they have studied consists
of each agent solving a traveling salesman’s problem (TSP)
and an O-contract involves one agent transferring one city
in its route to another agent. This exchange can reduce
the size of the optimal tour of the former by more than the
increase of the optimal tour of the latter.

Such exchange of tasks can prove to be mutually beneficial
to the contracting parties in sub-additive domains. These are
domains where the sum of the cost of doing two sets of tasks
separately may be more than the cost of doing the union of
the two task sets.

For sub-additive domains, we define individually rational
contracts as those for which the cost of the resultant alloca-
tion is less than or equal to the cost of the initial allocation
for each agent i participating in the contract:

gi(T
new
i ) < gi(T

old
i )

where T old
x refers to the allocation to agent x previous to the

contract and T new
x refers to the new allocation to agent x.

The objective of the heuristic algorithms is to maximize total

welfare increment, ∆W , which is the net difference between
the costs of the final and the initial task allocations.

∆W (S) =
X
i∈M

gi(T
final
i ) −

X
i∈M

gi(T
initial
i ),

where T initial
i and T

final
i are the initial and final allocations

to agent i at the start and end of the exchanging tasks as
specified by the contract sequence S.

We do not concern ourselves with specification of side pay-
ments for exchanges of tasks in individually rational con-
tracts. This is left at the discretion of the participating
agents in the contracts. It suffices to note that for individ-
ually rational contracts one can always find side payments
which will make the exchange of task attractive to both par-
ties.

We now discuss the algorithms used for selecting a se-
quence of n contracts for reallocating tasks between indi-
vidually rational agents, given initial task allocations. We
present both a deterministic greedy contract sequencing heuris-
tic and a stochastic GA-based contract sequence selection
approach.

2.1 Deterministic heuristic
Andersson and Sandholm [1] present an enumerative al-

gorithm for selecting sequences of individually rational O-
contracts. The sequencing of this contracting procedure
starts from agent 1, that tries to pass all its tasks, one at a
time, to agent 2. This procedure is repeated for each agent
until no more contracts can be made. This protocol leads
to maximum benefit in terms of total cost saved by all the
agents, but requires an exorbitant number of trials or con-
tracts to achieve that [1].

Trying out a disproportionately large number of contracts
to arrive at the optimum allocation is not feasible in practice.
As designers of contracting protocols, we will be interested
in measuring the quality of a solution generated within a
given amount of time. We modify the enumerative contract-
ing sequencing algorithm to heuristically order the sequence
of contracts attempted with the goal of selecting the max-
imal total reduction in cost (increase in welfare) under the



constraint of a fixed number of contracts. This corresponds
to real-life negotiating scenarios where we are interested in
identifying the few exchanges that lead to maximal utility
increment.

Limiting the number of contracts is reasonable in many
practical situations as there may be sufficient time or re-
sources to execute only a fixed number of contracts. We
adapt a greedy strategy for sequencing O-contracts, which
states that the agent trying to get a contract, uses its costli-
est task at that time and at any time the agent with the
costliest task (according to its present allocation structure)
gets to call for a contract, first. More formally, assuming
that the tasks are arranged in decreasing order of their costs
for each agent i as < ti1, ti2, ..., tiN >, where tij is the cost
of the jth task of agent i, then agent i will be able to call for
a contract for its task ti1 if ti1 ≥ tj1,∀j 1. The other greedy
choice in our procedure is the selection of the agent who
can be awarded the contract. The agent for whom receiving
the announced task will lead to the minimal increase in al-
location cost is identified and if the corresponding increase
is less than the cost decrease obtained by the contractor
agent, an individually rational contract has been identified.
If such a contract is possible, then the new task allocations
of the two participating agents are re-ordered by the up-
dated costs and the above procedure is repeated. If agent
i, on the other hand, fails to contract its costliest task ti1,
then the next agent with the highest task cost tries, and so
on. If no agent can contract away their costliest task, the
agents get to announce contracts in order of their second
costliest task, and so on.

The contracting sequence ends either if the specified finite
number of contracts have been performed or there are no
more contracts to be made. The latter happens, if all the
agents, in turn, try their costliest task, next to costliest task,
next to next to costliest task, and so on, until all the tasks of
each have been tried and yet no contract resulted (i.e, none
of those resulted in a valid contract).

In our experiments we use different random initial task
allocations among the agents for every combination of task
and agent numbers. The results are obtained by averaging
the final welfare obtained for each of the random initial task
allocations.

2.2 Non-deterministic contracting algorithm
We have used an order-based genetic algorithm (OBGA)

as the stochastic alternative of the O-contract protocol. GAs
are a class of stochastic algorithms that have been effectively
used in combinatorial optimization problems. Searching for
the optimal contract is a combinatorial optimization prob-
lem with an exponential search space. As long as there is
some regularity in the search space, GAs have the potential
of detecting the regularity and finding the contracts that
would perform effectively. GAs, however, do not guarantee
finding an optimal solution or bounding the quality of the
solution within a specified number of iterations.

We now discuss the representation that we used for the
OBGA for the optimal sequential contract problem. Let us
assume that the number of contracts allowed is k. Then each
member in the GA population is a string of length 3k and
contains k triplets. Each triplet consists of the contracting

1We assume that the centralized arbiter has perfect knowl-
edge about the task allocations and cost functions of indi-
vidual agents.

agent, the agent to which the contract is allocated, i.e., the
contractor agent, and the task that the contracting agent
gives to the contractor. One such triplet defines a contract
(giver, receiver and the task).

The values taken by the individual genes in the string
depend on what that position represents, i.e. whether it
corresponds to an agent or a task. More formally, there are
allele sets that each gene can take values from. Since, in
each triplet, the first two genes represent agents and the
third represents task, the first two genes in the triplet take
values from the allele set S1 = {1, 2..., A}, where A is the
number of agents, and the third gene in the triplet has the
allele set S2 = {ti1, ti2..., ti|Ti|}, where tik is the id of the

kth task of the contracting agent i having a total of |Ti|
tasks. We have used the GALib package and employed the
ArrayAlleleGenome class to enforce the above-mentioned al-
lele set constraints on the values taken by individual genes.
We also enforce the constraint that no agent can contract
out the same task to two different agents. The objective
function that is optimized (maximized) by our GA is the
change in welfare function, ∆W , defined previously.

3. PROBLEM DOMAIN
For running experiments, we chose a problem domain from

an interesting subclass of sub-additive domains, where the
cost of performing a set of tasks can actually decrease by
adding a new task to the task set! We call this subset of
domains ultra sub-additive domains. For example, if tasks
are nodes in a graph, and the job assignment is to find the
minimal spanning tree in the associated graph, the solution
cost can decrease if more nodes are added to the graph, i.e.,
if more tasks are added to the current set of tasks.

We now define the cost function used in our experiments,
and which belongs to the class of ultra sub-additive domains.
In this function, the cost of a given task j to agent i, cij , in
an allocation is dependent on the other tasks in the alloca-
tion, Ti:

cij = min
k∈Ti,k 6=j

|fi(j) − fi(k)|.

The total cost for the allocation Ti to agent i is then gi(Ti) =P
j∈Ti

cij . The motivation behind the design of this func-
tion is that we should be able to compute the cost func-
tions quickly. Moreover, if the fi function maps the tasks
to the number line, the optimal allocation would be to al-
locate those tasks to an agent for which the fi mappings
are densely clustered. For our experiments each task is an
integer value in the range 1, . . . , t and f(x) = x. Such a sim-
ple function suffices to demonstrate the efficacy of effective
contracting to generate desired clusters of allocations. Our
results, however, should hold for cost functions representing
other sub-additive domains.

4. EXPERIMENTAL RESULTS
We now report the results of our experiments that were

conducted to compare the performances of the two contract
sequencing heuristics in finding the optimal contract within
the limited number of contracts allowed. We allow a limit
of ten contracts, i.e., k=10, and examine the welfare earned
by the deterministic and stochastic contracting protocols at
the end of the contracting process for different combinations
of task and agent numbers. For each combination of tasks
and agents, we use ten different randomly generated initial
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Figure 1: Welfare earned by the deterministic and
stochastic contracting protocols (task per agent
varying).

task allocations for each agent and calculate the welfare ob-
tained at the end of the contracting process for each of the
ten initial allocations. We report the welfare obtained by
averaging the values obtained from the ten different initial
allocations.

In the first set of experiments, the number of agents was
fixed at 10 agents and the task per agent was varied from
3 to 6 in steps of 1. The GA parameters were selected as
follows: population size = 100, probability of crossover =
0.9, probability of mutation = 0.005, crossover technique =
“one point”. GAs were ran for 1000 generations and av-
eraged over 10 runs. The results from this experiment are
summarized in Figure 1.

It is evident from the plot that with the increase in the
per agent tasks, the welfare increases monotonically for both
the deterministic and the stochastic protocols. This is due to
the nature of the the cost function we have used to evaluate
an allocation. Since the cost of an allocation is the sum
of the minimum differences of each task cost from the rest,
as number of tasks increases, so does the number of tasks
initially allocated per agent and this leads to higher initial
task set costs. The optimal costs, however, increase at a
much lower rate, as optimal allocations involve consecutively
numbered tasks being allocated to the same agent2.

It is also evident from Figure 1 that the increase in global
welfare produced by the GA for the same value of per agent
tasks is substantially more than the corresponding values
obtained using the deterministic contracting protocol. It is
also observed from the graph that with increase in tasks
per agent, the difference between the welfare obtained from
the two protocols also increases. The rate of increment in
welfare with per agent tasks using the OBGA is more than
that obtained using the adapted original contracting proto-
col. As explained above, with increase in the per agent tasks,

2For the given evaluation function and task distribution
used, there exists a number of allocations which optimize
the social welfare metric. This includes an allocation where
all tasks are assigned to any one agent. However, only a few
of these solutions can be reached from the initial allocation
state using only O-contracts.
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Figure 2: Welfare earned by the deterministic and
stochastic contracting protocols (number of agents
varying).

the diversity of the contracts increase. Since a GA searches
in parallel several possible solutions (valid contracts), its
performance is more effective in finding better contracts. It
generates greater welfare than the deterministic protocol for
the same values of agents and per agent tasks.

In the second set of experiments, the number of tasks was
fixed at 60 tasks and the number of agents was varied from
5 to 20 in steps of 5. The GA parameters were selected as in
the first set of experiments. The results of this experiment
are summarized in Figure 2.

From the results we find an increase in welfare with an
increase in the number of agents for both the deterministic
and the stochastic protocols, with the welfare tending to
level off as the number of agents continue to increase. It
is also observed that the welfare values obtained using the
OBGA is almost twice that obtained using the deterministic
protocol for all values of agent numbers. OBGA outperforms
the deterministic original contract protocol by consistently
selecting more beneficial contract sequences.

It is also observed from the two figures that for the same
values of task per agent, (e.g. task per agent = 3 in Figure 1
and number of agents = 20 in Figure 2), the welfare obtained
are different. The welfare for the given values of task per
agent and number of agents are more than twice in Figure 2
than that in Figure 1. We should note, however, that the
total number of tasks and number of agents for the graph
of Figure 2 are 60 and 20 while in Figure 1 they are 30
(3 tasks per agent * 10 agents) and 10 respectively. Hence
the diversity of contracts possible in the former case is more
than that in the latter. That is, with more number of agents
and total tasks there is more diversity in initial allocation
leading to higher initial costs. This creates the possibility
for a contracting agent with the same number of tasks to be
able to avail better contracting opportunities. This results in
a bigger welfare earned for the same task by the contracting
agent in the former case than the latter case.

5. RELATED WORK
The problem of distributed task allocation has been stud-

ied using the contract net framework [17]. In this framework,



cooperative and self-interested agents having different pref-
erences contract tasks out to other agents. A contract, ef-
fectively, is equivalent to mutual selection of the agents (the
contracting agent and the contractor) involved in it. The
agents participate in a bidding and awarding sequence to
obtain contracts, much like auctions. Agents having differ-
ent local preferences, thus, have the potential of obtaining
the tasks that match their preferences, leading to a more ef-
fective performance of the group without requiring a central
mediator [7, 12].

Agents having different expertise levels and having a het-
erogeneous mixture of tasks may enter into cooperative coali-
tions to increase the performance level of the coalition as a
whole. Coalition structure generation among cooperative
agents is the strategy of finding the right group of agents
that one should associate with to get the job done with
minimal cost [13, 15]. Various models and algorithms have
been studied by multi-agent systems researchers to obtain
efficient and effective coalitions [11, 14].

A different approach of coordinating the task of solving
problems by a group of agents is that of argumentation [4].
Negotiation through argumentation provides the agents with
opportunities to resolve mutual conflicts. Self-interested ra-
tional agents come to know about the resources of other
agents and hence can decide for/against an exchange of tasks
among themselves. A rational agent can, using argumenta-
tive backup, win the cooperation of another non-cooperative
agent [16].

Centralized and de-centralized allocations of multiple re-
source items among agents has been the focus of combina-
torial auctions [3, 5, 9]. Extensive research in this area have
been conducted resulting in valuable insight regarding pos-
sible algorithms that can be employed in different auction
protocols to achieve effective allocations.

6. CONCLUSION
A number of agent and agent system design problems can

be mapped into combinatorial optimization problems with
huge state spaces. For a number of such problems, there
are no known polynomial time optimal algorithms. Deter-
ministic approximate algorithms often have the advantage
of guaranteeing bounds about the quality of the solutions
produced [11]. In some cases, such guarantees require the
availability of significant domain knowledge which may not
be readily available. In other cases, the bounds on optimal-
ity may not be tight. In either case, we believe there is a
need for an algorithm that perform better given a bound on
computational resources.

We argue for the need of more widespread application of
stochastic optimization algorithms in agent and agent sys-
tem design problem. We believe that a number of compu-
tationally challenging multi-agent systems problems can be
fruitfully addressed by the use of such techniques.

In our previous work, we have shown that a GA-based al-
gorithm can provide better results compared to determinis-
tic algorithms with guarantees given bounds on the number
of evaluations of potential coalition structures for the opti-
mal coalition structure generation problem [13]. In this pa-
per, we have shown that a GA implementation outperforms
a reasonable greedy heuristic on the optimal n-sequence con-

tract selection problem. In this work, we have used off-
line algorithms to heuristically generate desirable contract
sequences. The GA and the deterministic algorithms are

both heuristic approaches that have very distinctive bias of
searching the space of contract sequences. We allow the
deterministic heuristic to complete its biased search in the
contract sequence space, but run the GA for a fixed num-
ber of generations. It would be instructive to compare the
relative performance of these algorithms under bounds of
computational resources.

We reiterate the fact that the centralized approaches pre-
sented here are designed to generate only individually ra-
tional contracts. This is necessary as the central arbiter
can only suggest mutually beneficial contracts to participat-
ing agents, but cannot enforce any exchanges. Given that
there has been little previous work on heuristics to find fixed
length contract sequences that quickly improve both indi-
vidual and social welfare, we believe that the current work
provides a baseline to design and evaluate better contract
sequencing algorithms. We do believe that the centralized
approaches used in this paper should be followed up, or ap-
proximated, with distributed approaches that do not require
a central arbiter with perfect information.

As a logical extension to the set of experiments we have
already ran, We plan to run a set of experiments by vary-
ing the number of contracts allowed for a given number of
agents and tasks. This would allow us to evaluate the rela-
tive progress in improving social welfare as more and more
contracts can be executed.
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