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Abstract

Though various interesting research problems have
been studied in the context of learning agents, few re-
searchers have addressed the problems of one, knowl-
edgeable, agent teaching another agent. Agents can do
more than share training data, problem traces, learned
policies. In particular, we investigate how an agent
can use its learned knowledge to train another agent
with a possibly different internal knowledge represen-
tation. We have developed an algorithm that can be
used by a concept learning agent, the trainer, to it-
eratively select training examples for another agent,
the trainee, without any assumptions about its inter-
nai concept representation. We present initial results
where the trainer agent is an instance based concept
learner and the trainee agent is a decision tree learner.

Introduction
Transfer of learning from one human to another is a
laborious and fragile process. The success of such a
transfer of knowledge or expertise depends on a variety
of factors including common background knowledge of
teacher and learner, the teaching skill of the trainer, the
learning skill of the learner, the availability of original
training information and context, etc. On the other
hand, it is often argued that the transfer of learning
between software agents is instantaneous and fail-safe
and, therefore, "if one computer learns something, all
of them have learned it!"

Though there is some merit to this argument in an
ideal world, if we consider the real world, one can find
convincing evidence that such a blanket statement is
simply not justifiable. In particular, any time two com-
puter systems or software agents use different internal
knowledge representations or algorithms, the transfer
of knowledge from one to another cannot be accom-
plished by a simple copy operation. Consider, for ex-
ample, one software agent using a rule based system for
learning and reasoning whereas another using a neu-
ral network representation. The process of transferring
learned knowledge from one to the other can immedi-
ately be recognized as a challenging procedure. Such a
knowledge transfer can well turn out to be as complex
and error-prone as is the transfer of knowledge between

two human beings.
In this paper, we address the problem of transfer of

knowledge between a trainer and a trainee agent. The
knowledge being transferred is a concept description.
A concept description is a boolean-valued function that
classifies input examples as members or non-members
of the target concept (Mitchell 1997). We assume that
the trainer agent does not have access to the internal
knowledge representation of the trainee agent, but can
observe its concept recognition abilities by providing ex-
emplars and non-exemplars of a concept and observing
the performance of the trainee agent. Though there can
be additional research issues that augment the trans-
fer of concept description knowledge between these two
agents, we focus on the incremental selection of training
examples by the trainer to expedite the learning of the
trainee agent.

The primary advantage of concentrating on the iter-
ative selection of training examples from observed per-
formance is that the basic process can be independent of
the internal knowledge representations and algorithms
of the trainer and learner. A secondary benefit is that
the developed procedure can:

¯ be motivated by procedures used by human teachers
to choose training exemplars for human students;

¯ be used, in principle, by a software agent to teach a
human user.

Though these aspects are not our primary concern, it
does open up fruitful avenues for future work.

While a number of researchers have looked into the
research issues involved in agents learning concurrently
or cooperatively, there is little work on a trainer agent
carefully choosing training instances based on past per-
formance of the trainee agent. In this paper, we first
present the general architecture of the Agent Teaching
Agent (ATA) framework. Though it is not necessary,
we do cover the learning process of the teacher, i.e.,
how the teacher itself acquired the knowledge it is now
trying to teach the trainee. When the teacher agent as-
sumes the teaching role, we assume that the entire set of
training instances that it experienced is no longer avail-
able to teach the trainer. While this assumption can be
violated in particular real-life situations, it allows us to
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develop more general-purpose training framework that
does not depend on the availability of original training
instances. This assumption is also justified if:

¯ the original training set size was too large to be car-
ried around by a compact-sized learner, e.g., mobile
agents, or

¯ the teacher had no reason to believe that it will need
those training instances in the future and hence got
rid of them after its own learning was over, e.g., the
teacher did not foresee its teaching role.

We have run some initial experiments with the
teacher using an instance-based learning algorithm,
IB2 (Aha, Kibler, & Albert 1991), and the learner using
a decision-tree based learning algorithm, C4.5 (Quin-
lan 1993). For initial development and evaluation we
decided to use a set of artificial concept descriptions
that we have used in our previous work (Sen & Knight
1995). We have also started evaluating our methodol-
ogy on some data sets from the UCI machine learning
repository (Murphy & Aha 1992). Though these latter
data are not included in the current paper, we plan to
include them in the next version.

In the rest of the paper we first present the ATA
framework with details of the algorithm used for incre-
mental training set determination. We then illustrate
the target concepts used for evaluation. This is followed
by the experimental results and some observations on
our experiments. Finally, we discuss relevant existing
literature, present the summary conclusions from our
initial experiments and identify currently ongoing and
planned work.

Agent Teaching Agent Framework
The motivation in our work has been that a teacher
agent can guide the learning process of a learner agent
by observing the latter’s problem solving performance.
In the context of concept learning, this means that
based on the success and failure of the trainee in clas-
sifying given exemplars, the trainer can choose an ap-
propriate sequence of training examples to guide the
learning process of the trainee.

The basic ATA framework architecture is presented
in Figure 1. The Trainer agent first acquires the tar-
get concept from its interaction with an environment,
and using its learning module. This learning process
produces a target concept description in the internal
knowledge representation format of the trainer agent.
These formats can range from logical rules (Quin-
lan 1990), genetic structures (DeJong 1990), computer
programs (Koza 1992), decision trees (Quinlan 1986),
stored instances (Aha, Kibler, & Albert 1991), neural
networks (Rumelhart, Hinton, & Williams 1986), etc.
The trainer agent also has a training module which in-
teracts with the trainee module and provides succes-
sive training and testing set to train and evaluate the
progress in learning of the trainee agent. The trainee
learns its own concept description from the set of clas-
sifted training examples provided by the trainer. It also

classifies each of the unclassified test examples provided
by the trainer and returns these classified instances to
the trainer for evaluation.

We envisage an iterative training procedure in which
alternatively the trainer selects a set of training and
testing exemplars, the trainee trains using the train-
ing set and then classifies the testing set, the trainer
observes errors made by the trainee in classifying the
instances in the last testing set and accordingly gen-
erates the next training and testing set. This iterative
process converges when trainee error falls below a given
threshold. We present these iterative training steps in
an algorithmic form in Figure 2.

The algorithm presented in Figure 2 needs to be fur-
ther fleshed out to realize an actual implementation. In
particular, we have to specify procedures for selection
of the initial training and testing sets, No and To, and
the generation of the next test set Ti+t based on the
mistakes, M~, made by the trainee on the current test
set.

We first present the underlying principles for design-
ing these procedures. When selecting the initial train-
ing and testing instances, the goal is to select the most
discriminating examples that help identify regions of
the input space that do and do not belong to the target
concept. For example, if a hyperplane separates in-
stances of the target concept from non-instances, then
points close to and on both sides of that hyperplane may
be selected as initial training and testing set members.
When selecting the next set of training and testing in-
stances, the goal is to first isolate the mistakes made on
the previous test set, and for each of these instances,
find a few neighboring points, using some of them as
training data and the rest as test data. Note that the
true classification of these points are not known in gen-
eral, and only their estimated classification, based on
the concept description knowledge previously acquired
by the trainer, can be used.

The actual procedure for selecting the sets No and To
will depend on the internal representation used by the
trainer agent. In our experiments, described in the fol-
lowing section, we have used an instance based learner
as the trainer. This learner stores a subset of the train-
ing examples as its concept description. To select No
and To, we first sort, in increasing order, the stored
points by the nearest distance to another stored point
of the opposite classification. So, the sorting metric for
any stored instance s in the set of stored instances, S,
is

min d(r, s),
r~SAc(s)~c(r)

where d(r, s) is the distance between the points r and
s in the input space, and c : X -~ (0,1) is the boolean
concept description function that classifies any instance
in the input space X as a member or non-member of
the target concept. Let this sorted list, L, be further
divided into L1 and Lo, viz., lists containing members
and non-members of the target class.

We decided to start with a percentage of stored points

56



Environment

___; ....
[ Incretnental 7~atnin& ] [ lncretnental }
I s~ I,, Tat II

’~"T" a ~1 ,.9~’ I

.....Learning Modulo

r----N~ F- w_
Concept description

I

Trainer

r Agent

I
Concept description 1

~ , l|

Training Module
!

................... i
Classifications !

_ _L Agent
I
I
|

Figure 1: Agent Teaching Agent (ATA) framework.

as training and test set. In our experiments we started
with 40% of stored points as the initial training set and
20% of the stored points as the initial test set. Equal
number of instances of both classes were chosen for the
initial test and training sets by going down the sorted
lists L0 and L1.

The actual procedure for selecting Ti+l, the next set
of test examples, from Mi, the mistakes made in the
previous cycle, was more general. For each point m E
Mi we randomly generated n points within a square of
sides e centered at ra. Each of these n, IMil points were
classified by the trainer’s learned concept description
function ctrain,~ : X ~ {0,1}. This portion of the
instance selection process is generic and can be reused
by trainers which are not instance-based in nature. For
each ra E Mi, we also locate the nearest stored point of
the same category which have not already been used as
a test or training instance in a previous iteration. The
motivation was to see if the trainee continues to make
mistakes on similar points. This portion of the instance
selection process is specific to learners who store some
of the training instances. A union of these two set of
instances is then used to test the trainee in the next
training iteration.

Experimental setup
As mentioned above, in the preliminary set of exper-
iments we have run, the trainer agent is an instance-
based learner. We have used the IB2 algorithm as the
learning module of the trainer agent. IB2 is an incre-
mental algorithm that receives one instance at a time
and stores only those instances which it cannot cor-

rectly classify using prior stored instances (Aha, Kibler,
& Albert 1991). The performance of this algorithm and
the number of points it stores depends on the order of
arrival of the input instances, e.g., if all instances of the
same class precedes all instances of the other class the
performance will be poor as only the first instance of
’the initial class will be stored.

For the trainee agent, we used the C4.5 algorithm, a
batch-mode decision tree learner (Quinlan 1993). This
algorithm is one of the most often-cited work in concept
learning and classification literature in machine learning
and has robust performance in the presence of noise.

For evaluation of our ATA framework we decided to
use a suit of concept description problems for which we
can easily vary the concept complexity (Sen & Knight
1995) (see Figure 3). For each problem, there are 
continuous-valued input variable, and the input space is
the unit square, i.e., each variable ranges between 0 and
1. The non-shaded regions belong to the target concept.
For the different problem instances, the input is frag-
mented into different number of regions and this varies
the complexity of the learning problem. The problems
are somewhat difficult for the decision tree learning al-
gorithm as decision surfaces are not axis-parailel. In
addition, we also experimented with a circle domain
where any point outside a circular region of radius 0.25
and centered at (0.5,0.5) belongs to the target concept.
This was chosen to experiment with non-linear decision
surfaces. We are also experimenting with a reai-life
domain with data from breast-cancer patients that we
obtained from the UCI machine learning repository.

At the present time, however, we have only completed
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Procedure Train-Agent(Trainer, Trainee, Trainer-knowledge)

{
Select initial training set, No, and initial testing set, To, from Trainer-knowledge;
i 6-0;
Repeat{

Train Trainee on training set, Ni;
Let Mi be the instances in Ti misclassified
by Trainer after training on Ni;
Generate next test set, Ti+l, based on Mi and Trainer-Knowledge;

I 6- Ni U ;
i 6- i+l;

} untildMd < threshold);

Figure 2: Algorithm for generating training and testing sets.

experiments with the 2/1 domain. For each domain we
generated 1000 points from a uniform distribution over
the input space. We then ran experiments with five-fold
cross-validation, i.e., the results were averaged over five
training-test set pairs. The size of each training set was
800 and that of each test set was 200.

In the experiments, for each mistake made by the
trainer, 3 points are generated in the square of side 0.1
with the error point at the center, i.e., n = 3, e = 0.02.
We stopped the training loop when the trainee made
no mistakes on the last incremental test set.

The performance of the trainee over the incremental
test set is not representative of the overall quality of the
learned knowledge. To evaluate the progress of learning
of the trainee agent over successive iterations of training
we use the learned concept description at the end of
each iteration to classify the entire test of 200 instances.
The corresponding performance over the entire test set
gives us a reasonable estimate of the generality of the
learned knowledge.

Initial Results
We plot the classification accuracy of the trainee agent
over the entire test set, with the average and standard
deviation over the five cross-validation runs, for the 2/1
problem in Figure 4. For comparison we also include
a line that denotes the average performance of C4.5 if
it had access to the entire training set of 800 training
instances. We see that the ATA framework does lead
to a quick improvement in performance of the trainer
and reaches approximately 88% accuracy with a rela-
tively small number of training instances. We ran an-
other set of experiments where randomly selected points
were classified by the trainer using its learned knowl-
edge and then presented as testing instances in the iter-
ative training phase. The increase in performance of the
trainee with increase in training instances was signifi-
cantly worse compared to the ATA framework which
chooses instances based on the mistakes made in the
previous training iteration.

We also evaluated the trainee’s performance by pre-

senting it with all the instances that were stored by the
IB2 learning algorithm, i.e., the entire learned knowl-
edge of the trainer, in one shot. The IB2 algorithm
stored on the average about 50-60 of the 800 training in-
stances presented to it. The performance of the trainee
agent using the C4.5 algorithm, when trained on these
few instances, resulted in only about 75% accuracy on
the entire test set.

We wanted to test our approach on larger, real-
life data sets. As a start, we have run ex-
periments on the Spamabse database obtained from
the Machine Learning Repository hosted by the CS
department of the University of California Irvine
(verb + http: / / www l .ics.uci.edu ] mlearn]MLSummary.html+).
This data set has 4601 instances and 57 continuous
valued attributes. The goal of the concept learning
is to identify a given e-mail as spare or not based on
features that counted the percentage of times certain
words or characters occurred in the e-mail. Spare can
originate from diverse sources like advertisements for
products or web sites, make money fast schemes, chain
letters, pornography etc. The collection of spare e-mails
came from our postmaster and individuals who had filed
spare. The collection of non-spare e-mails came from
filed work and personal e-mail. The mails are classi-
fied into two classes, spare and non-spare e-mail. We
performed 5-fold cross validation on this data set. IB2
typically stored between 300 and 600 training instances.
The average test accuracy of IB2 and C4.5 algorithms
on this data, when trained on 80% of the instances and
averaged over the 5-fold cross-validation, are 83.2% and
86% respectively. Now with the incremental training
scheme in the ATA framework, we got an average test-
ing accuracy of about 80% with C4.5. This result was
obtained with the C4.5 algorithm being provided with
significantly lower number of training data than the en-
tire training set. In this domain, the test performance
of C4.5 was somewhat higher when it was trained on
the entire set of points stored by IB2. This suggests
that the incremental training and test set selection al-
gorithm in ATA can be further improved. We should
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Figure 3: The classification problem set.

note, however, that training points will not be stored
in general with other learning algorithms, e.g., if C4.5
is used as the trainer agent.

Related Work

Multiagent learning has been an active area of research
in the late 90s (Sen & Weisfl 1999; Stone & Veloso 2000).
Though there have been considerable research on agents
learning concurrently or cooperatively (Prasad, Lesser,
& Lander 1996; Provost & Hennessy 1996), or even
learning by observing opponent’s behavior (Carmel 
Markovitch 1996; Hu & WeUman 1998; Littman 1994),
there has been little work in which an agent proactively
trains another agent. The most relevant work comes
from one learner telling another agents what portions of
the search space to ignore (Provost & Hennessy 1996),
a learner sharing experience (Banerjee, Debnath, 
Sen 2000), problem-solving traces or even learned poli-
cies (Tan 1993) with another concurrent learner. Tan’s
work (Tan 1993) of an expert sharing effective problem
solving traces with a novice agent and Clouse’s work of
a trainer suggesting actions to take (Clouse 1995) are
perhaps the closest in motivation to the current work,
but the iterative nature of teaching, at the heart of the
ATA framework, is not addressed by them.

The other issue we need to address is the general-
ity of the current framework. As noted before, the
selection of the initial training and test set was facil-

itated in our experiments by the choice of an instance
based approach as the learning module in the trainer.
We need to work on using other knowledge representa-
tion schemes to extract decision surfaces learned from
the training data. While some recently developed algo-
rithms like Support Vector Machines (Burges 1998) lend
itself easily to such introspection, more involved pro-
cessing would be needed to work with opaque learned
knowledge like neural networks (though some work has
been done to interpret neural networks (Towell & Shav-
lik 1992)). As a brute force method, however, we can
always generate anumber of points, classify them with
the trainer’s learned concept description and use those
points which were close to points of the opposite class as
the initial training and test sets provided to the trainee
agent. Such point generation need not be completely
arbitrary, and can be focused on regions which shows
mixture of exemplars and non-exemplars. Other, more
knowledge-directed approaches can be studied in the
context of symbolic classification knowledge produced
by decision tree and rule learners.

Conclusions

We have proposed an ATA framework in which a trainer
agent can used its learned concept description to iter-
atively generate training examples to train a trainee
agent. No assumption is made about the internal
knowledge representation and learning procedure of the
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Figure 4: Trainer performance on test set in the 2/1
problem with increasing training iterations.

trainee agent. We present arguments for the generality
of our approach and evaluate it in a sample artificial
domain with an instance-based learner as the learning
module of the trainer and a decision tree learner as the
learning module of the trainee agent. Initial results are
encouraging and demonstrates effective learning of the
trainee agent.

We are currently running experiments on a wider set
of problem instances that contain both artificial and
real-life data and plan to include the results in the next
update of this paper. We are also planning to use a
support-vector machine based trainee agent, which will
be trained by both the current instance-based trainer
agent and a decision-trec based trainer agent. We have
developed an initial sketch of how a decision-tree based
trainer agent can generate effective sequences of train-
ing data and are looking forward to evaluating that ap-
proach.

Though the results presented here are preliminary in
nature, we believe the ATA framework holds promise,
and the trend shown in the initial results will generalize
and scale well.
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