
Unsupervised Surrogate Agents and Search Bias
Change in Flexible Distributed Scheduling

Sandip Sen
Mathematical & Computer Sciences Dept

University of Tulsa
600 South College Avenue

Tulsa, OK 74104
sandip@kolkata.mcs.utulsa.edu

Abstract

Computational infrastructures for cooperative
work should contain embedded agents for han-
dling many routine tasks (Galegher, Kraut, 
Egldo 1990), but as the number of agents in-
creases and the agents become geographically
and/or conceptually dispersed, supervision of the
agents will become increasingly problematic. We
argue that agents should be provided with deep
domain knowledge that allows them to make jus-
tifiable decisions, rather than shallow models of
users to mimic. In this paper, we use the ap-
plication domain of distributed meeting schedul-
ing to investigate how agents embodying deeper
domain knowledge can choose among alternative
strategies for searching their calendars in order to
create flexible schedules within reasonable cost.

Introduction
In characterizing computational tools for supporting
cooperative work, researchers have often considered
how dimensions of time and space lead to different
tools. The result is often a characterization (Johansen
1988) of tools like that shown in Table 1, with represen-
tative entries in each of the matrix elements. Implicit
in the entries of this matrix is the question being ad-
dressed by these tools. To make this explicit, we coukl
say that the matrix categorizes "tools that support col-
laboration on a task among multiple participants who
are in the z", where z is some combination of time and
place dimensions.

But consider what happens if we use the same matrix
but ask a different, though just as important question.
Since most if not all participants in a collaboration are
also participating in other collaborations, let us use the
matrix to categorize "tools that support collaborations
for a single participant when the collaborative tasks
are in the z".

A person can face tasks at the same place and differ-
ent times, as visitors (email messages) arrive periodi-
cally at the person’s office (workstation) in the course
of a day. Or the tasks might be at different places at
different times, so that the person must travel (perhaps
electronically) from task to task during a day. Either
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way, computational tools such as advanced interfaces
and networking software can support the person in his
or her collaborations by allowing the person to move
more quickly among tasks and to complete each task
faster.

Often, though, tasks for various collaborations must
be done at the same time. For such tasks, there are two
general approaches to providing computational sup-
port. One approach is to use computer processes to
prioritize tasks, which serves to conceptually push the
problem back into the "different times" column. These
processes can, for example, filter and sort email (Mal-
one et al. 1987), and can solve scheduling problems
to help the user navigate among competing tasks so as
to attend to them one at a time in the proper order.
Hence, this approach performs "triage" on the tasks,
but the user has to eventually attend to them all.

The other general approach is to delegate respon-
sibility for tasks so that they can indeed be handled
in parallel. The idea here is to generate, to some de-
gree, processes for the user that act on the user’s behalf
when he or she is otherwise occupied. Thus, in this ap-
proach, the user might never have to attend to some of
the tasks. In the case of "same place, same time," these
processes could reside at the user-machine interface,
intercepting tasks meant for the user and completing
them semi-autonomously. Much of the recent work in
building "agents" into interfaces has been directed to-
ward this problem. In the case of "different places,
same time," the processes could reside (geographically
or conceptually) remotely from the user, acting on his
or her behalf with little if any supervision on the part of
the user. Thus, while interface agents could be mon-
itored and continuously tailored by the user, remote
surrogate agents cannot be. A user employing sur-
rogate agents must therefore have confidence in their
decision-making, and the agents must have the ability
to adapt themselves to changing circumstances based
on well-founded criteria. These approaches are sum-
marized in Table 2.

Our work has focused on the problem of how an ap-
plication domain for intelligent surrogate agents can be
analyzed, understood, and represented such that these
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II II Same ’lime I Different Times II
Same Electronic Electronic
Place whiteboards bulletinboards

Different Tele- Electronic
Places conferencing marl

Table h Tools for Supporting a Collaboration.

{I II Same Time Different "limes II
Salne Filtering ~Ibols for rapid
Place agents----, task completion

Interface upon task arrival
agents

Different Scheduling "lbols for rapid
Places agents---, movement among

Surrogate distributed tasks
agents

Table 2: Tools for Supporting a User in Multiple Col-
laborations.

agents can make appropriate adaptations to their envi-
ronment, to carry out tasks on behalf of human users.
Our particular domain of inquiry has been the meeting-
scheduling application, and elsewhere we have analyt-
ically developed and experimentally verified quantita-
tive predictions of performance for various strategies
for proposing, counterproposing, and committing to
meetings (Sen & Duffee 1992). In this paper, we con-
sider a different aspect of the problem, namely, strate-
gies for ordering the possible meeting times to propose.

The choice of strategy for considering time intervals
for meetings will have numerous effects, including ef-
fects on the density of meetings in different parts of
the calendar, the likelihood of scheduling future meet-
ings of different types, the costs of scheduling, and the
time needed to schedule meetings. More importantly,
given targets for calendar densities and limited costs
and time for scheduling, a calendar management agent
should adapt its strategy choice based on the larger
context of what it expects to schedule in the future
and what it knows of the calendars of the other agents.
These adaptations might not be under the constant
supervision of the user, and thus should be made by
embedding domain knowledge (a rigorous model of the
task) into the agent, rather than trying to capture 
superficial model of the user acting in a small sample
of cases.

Though we use the domain of meeting scheduling to
evaluate the effects of different search biases, our re-
sults should hold for any distributed, reactive schedul-
ing systems which respond to resource requests as and
when they arrive dynamically over time. The evaluated
search biases can also be used in batch mode schedul-
ing systems, but we believe more efficient heuristics are
available for such problems (Noronha & Sarma 1991).

Problem Specification
A meeting schedule consists of a group of meetings for
a group of persons. Given a set of n meetings and k
attendees (hosts and invitees), a scheduling problem 
represented as S = (.A, Ad), where ,4 = {1,2,...,k}
is the set of attendees and .M = {ml,m2,...,mn} is
the set of meetings to be scheduled. A time slot is
represented as a date, hour pair (D, H). A set of con-
tiguous time slots is called a time interval. A meeting
is represented by a tuple:

mi -- ( Ai , hi , li , wi , Si , ai , Ti ),

where
Ai C_ ,4, is a set of attendees of the meeting;
h~ 6 Ai, is an attendee who will host the meeting;
li is the required length of the meeting in hours;
wi is the weight or priority assigned to the meeting;
Si gives a set of possible starting times on the cal-

endar for the meeting. If ISil = 1 the meeting is said
to be constrained (the exact interval to be used for
the meeting, if possible, is pre-specified); if Si includes
all physically possible time slots on the host calendar,
assuming that it was empty, that can accommodate a
meeting of length li starting at that slot, then the meet-
ing is said to be unconstrained; otherwise, the meeting
is semi-constrained;

a~ is the arrival time of the meeting (host gets to
know it has to schedule this meeting);

Ti is the time interval for which the meeting rni is
finally scheduled and is represented by an ordered set
{(D,, Hi), (Di, Hi + 1),..., (Di, Hi + li - I)}, (here 
gives the date and Hi gives the starting hour for which
meeting mi is scheduled) if the meeting could be sched-
uled, and by 0 otherwise.

The agents use this representation as they engage in
a distributed scheduling process based on the multi-
stage negotiation protocol. The protocol involves the
following steps. On receipt of a meeting to schedule,
the meeting’s host searches its calendar for possible
time intervals, and proposes the top n (n >_ 1) to invi-
tees. An invitee, upon receiving a meeting announce-
ment, will return a bid. The bid can either respond
yes/no to each of the n proposed times, or it can
respond with m possible meeting times, where those
times might overlap with the original n but can also
counterpropose new alternative time intervals. The
host, after receiving bids, can attempt to confirm an
agreeable time if all of the agents have indicated that
a particular time is free for each of them, and other-
wise the host will repeat the process with a new an-
nouncement message giving a new selection of n meet-
ing times.

Search Bias
We view a search bias as an a priori measure of the
goodness of certain particular solutions being evalu-
ated. In this respect, different search biases can be re-
lated to different Value Goodness measures (Haralick
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& Elliott 1980), as used in the constraint satisfaction
literature.

Our earlier work tacitly assumed that meetings
should be scheduled as early as possible, and yielded
solutions where calendars tended to be dense at the
beginning and sparse at the end. This "lumping" has
the disadvantage that it places uneven demands on the
user, and that it cannot easily accommodate what we
call high-priority short-notice (HPSN) meetings. The
latter means that, if the user suddenly learns of a meet-
ing that must be scheduled very soon, there tends to be
no open slots for this meeting, leading to costly rounds
of cancellation and rescheduling.

More evenly loaded calendars are likely both to place
more steady demands on users and to accommodate
HPSN meetings more easily. Building such a calen-
dar means that, when scheduling a new meeting, pref-
erence should be given to slots that are in the least
dense portion of the calendar. Unfortunately, search
with this criterion is not nearly as systematic as with
the previous (prefer early) criterion, because, while all
agents will agree on what is earlier or later, the agents
will generally disagree on where the least dense parts
of the calendar are, since each has a different calendar
with different meetings distributed in it.

Moreover, while the resulting schedule will more
likely be able to accommodate HPSN meetings, it will
have more trouble scheduling long meetings. That is,
scheduling meetings in less dense parts of the sched-
tile tends to fragment available time into smaller and
smaller pieces: even if an agent has n hours of free
time, those hours might be broken into short spans
across several days. Note that a preference for ear-
lier meetings would not have this problem, since it will
tend to leave longer contiguous blocks of time at the
end of the calendar.

We now present three different search biases, identi-
fying how they work, and the types of solutions (cal-
endar profiles) they generate:

Linear early (LE): With this search bias, an agent
attaches increasing goodness values to intervals earlier
in the calendar, i.e., given a meeting, the agents try to
schedule the meeting as early as possible. The search
bias is implemented by making an agent start search-
ing the calendar at the earliest possible scheduling op-
portunity, skipping over any intervals overlapping with
already scheduled meetings, and negotiating with the
earliest free interval on the calendar long enough to
accommodate the meeting. This search bias can be
likened to the First Fit memory allocation scheme (Pe-
terson & Silberschatz 1985).

Linear least dense (LLD): With this search bias,
an agent tries to schedule a meeting in the least dense
part of its calendar. The search bias is implemented by
the host of the meeting ranking all the empty intervals
on its calendar long enough to accommodate a given

meeting (and within the window of acceptable times for
the meeting) by a function that measures the number
of free calendar slots around that interval. The agent
then steps down this ranked list and negotiates with
other attendees of the meeting until it can schedule the
meeting. This search bias can be likened to a local form
of Worst Fit memory allocation strategy (Peterson 
Silberschatz 1985).

Hierarchical (H): With this search bias, an agent
tries to schedule a meeting in the least dense part of
the combined search space of all the attendees of tile
calendar. The search bias is implemented by building
an abstraction hierarchy atop the linear calendar for
each meeting-scheduling agent. At each node in the
hierarchy, agents keep a record of the number of in-
tervals of different length free below that node in the
hierarchy. The calendar space lends itself to a very
natural hierarchy of hours, days, weeks, etc., and the
agents participating in a meeting can first identify a
good week to meet in, then identify a good day within
that week, and finally an actual interval within that
day. Given a meeting of some particular length to
schedule, the host asks for and receives information
from all the invitees about how many intervals of that
length are open at each node (e.g., at each week) 
the highest level of the hierarchy. It multiplies the
numbers together for corresponding nodes, ranks the
nodes, elaborates the best one, and proceeds to repeat
the process for the next level of the hierarchy under
the elaborated node. At the ground level, information
exchange takes place like the LE scheme. Backtrack-
ing occurs if a particular portion of the ground level
being elaborated contains no solution to the schedul-
ing problem. In this paper, the levels of the hierarchies
used by the agents correspond to days and hours only.
Agents first negotiate about the likelihood of schedul-
ing a meeting on different days, then choose the most
likely day and start LE negotiation within that day.
The host may fail to schedule the meeting in the most
likely day, and will then backtrack to the next most
likely day. This search bias can be likened to a global
form of Worst Fit memory allocation strategy (in the
sense that the fitting takes place in the most free part
of the combined search space of all the participants of
a meeting).

Experimental Results and Analysis

We evaluated these search biases both in terms of
achieving acceptable solutions and in terms of compu-
tational and communication costs using the following
metrics:

Communication cost (CC) is measured by the av-
erage number of information packets exchanged to
schedule a multi-agent meeting. One information
packet consists of a proposal from a host or an invi-
tee. In the case of H search bias, while negotiating
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at a non-leaf node of the hierarchy, a node-number
and meeting-likelihood pair is considered an infor-
mation packet. This measure provides us with an
estimate of the amount of bandwidth required to
schedule meetings.

~j=l cijc =
~ra

where n - ]~4[, k = ].AI, and c~j =

~"~v~,~eA~ and $~ ]IIijvl, where HisU denotes the set
of proposals that individual z sent to individual y
to schedule a meeting mi, and nm is the number
of multi-agent meetings scheduled. This measure is
used to distinguish otherwise equivalent biases by
preferring those which requires less communication
bandwidth.

Iterations (I) required to schedule a meeting is mea-
sured by the average number of rounds of negotiation
entered into by the participating agents in a meet-
ing before a meeting is scheduled, or it is recognized
that the meeting cannot be scheduled. This measure
indicates the amount of time required to schedule a
multi-agent meeting.

Slots Searched (SS) to schedule a meeting is mea-
sured by calculating the sum of the number of pos-
sible intervals on the calendar looked at by the par-
ticipants while trying to schedule a meeting. The
measure is an average over all the meetings sched-
uled. It is indicative of the search complexity (and
correspondingly, the time taken) for finding intervals
to propose.

Meeting Hours Missed (MHM) represents
the success of scheduling the meetings requested so
far, and is calculated as the ratio of the number of
hours that got scheduled over the number of hours
for all meetings requested.

E;’=; 1, ̄  lad * (1 - m)MHM =

1 if rn~ has been scheduledwhere pi = 0 otherwise.

Density Profile Characteristics (DPC) are plots
that display the variation of the number of free in-
tervals of different length over the length of the cal-
endar. The numbers are averaged over all the agent
calendars. This measure is indicative of the spread
of the meetings scheduled on the calendar, and can
be used to predict the success of scheduling different
kinds of meetings on the given calendar.

The first three of these criteria measure the cost
incurred in the process of scheduling the meeting,
whereas the last two criteria reflect the quality of the
schedule generated both in terms of how well it has
scheduled known meetings and how likely it is to sched-
ule future meetings. We now briefly present our expec-
tations of how different search biases will perform on

the different evaluation criteria, and also provide brief
intuitions behind these expectations.

We report results from two different sets of experi-
ments involving two different organizations, where an
organization is characterized by the number of individ-
uals scheduling meetings and the length of their corre-
sponding calendars. For the smaller organization, we
consider 3 agents with 5 day calendars. The corre-
sponding numbers for the larger organization are 10
and 14 respectively. In both cases, each day consists of
9 hours. The agents start with an empty calendar and
are given a number of meetings to schedule. The meet-
ing requests are assigned such that if all the meeting
requests get scheduled, each of the agents will have ~/
hours reserved in their calendar. Given a total number
of L -45 (126) hours on each agent’s calendar for the
smaller (larger) organization, we have run experiments
varying 7/from 10 up to 40 (70 up to 130), in steps
of 5 (10). All meetings are totally unconstrained. For
each search bias, and for each value of 7/, the results
reported are averaged over 1000 runs of randomly gen-
erated meetings. The meeting lengths are chosen from
a discrete probability distribution assigning the proba-
bilities 0.3, 0.25, 0.2, 0.15, 0.05, 0.05, 0.0, 0.0, and 0.0
to meeting lengths 1, 2, 3, 4, 5, 6, 7, 8, and 9 hours
respectively. In the simulation, we schedule meetings
sequentially. Though one of the primary benefits of
a distributed formulation of the scheduling problem is
the increased throughput obtained by concurrent pro-
cessing of multiple tasks, we use a sequential mode
here to identify the effects of search bias independent
of concurrent processing issues.

For the smaller organization, the number of itera-
tions and the communication cost obtained with the
LE bias is low and varies little with varying 7/. Com-
munication cost is roughly 3 times the number of itera-
tions, because multi-agent meetings can involve either
2 or 3 persons, and the corresponding communication
cost per iteration of the scheduling process is 2 and 4
respectively (more generally, for a k person meeting,
the communication cost per iteration of the normal
information exchange phase of our negotiation proto-
col is 2(k - 1)). Low values of these metrics can 
attributed partly to the use of an effective bidding
strategy (alternatives option). The fact that the LLD
bias performed only slightly worse on these metrics in-
dicates that other reasons contributing to these results
include the relatively empty calendars available to the
agents to process meeting request, the small number
of agents, and small number and high percentage of
multi-agent meetings (which means that the calendars
fill up similarly). This analysis prompted us to experi-
ment with larger organizations to see how these biases
scaled up.

Results from experiments with the larger organiza-
tion are presented in Figure 1 and Figure 2. In these
experiments, 75% of the meetings required the atten-
dance of two or more agents.
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In sharp contrast to the results obtained with the
smaller organization, in experiments conducted with
the larger organization, the H search bias schedules
meetings quicker than the LE or LLD search biases.
This is due to the fact that when attendee calendars
are stacked up differently, the H bias use the hierar-
chical information exchange to quickly identify parts of
the calendar that are likely to contain a mutually ac-
ceptable interval. The other search biases waste more
time eliminating unlikely candidates from the search
process. This is particularly true for the LLD search
bias, in which ease the host does not receive informa-
tive replies from the invitees to aid the negotiation pro-
eess. The number of iterations taken to schedule meet-
ings with the H search bias is almost constant over 7/.
One of these iterations is spent to gather information
about the density profiles at the day level of the hier-
archy from the invitees of a multi-agent meeting. This
particular iteration also incurs a heavy communication
cost as the number of information packets sent by each
invitee is equal to the number of days in the calendar,
as opposed to sending only one packet for any other
iteration. As such, the communication cost is consid-
erably higher than in the other two cases.

The slots searched metric for the LE bias linearly
increases with 7/; this was anticipated because with
more hours full on the calendar, the agent has to search
progressively further to find an empty interval on the
calendar. As expected, the slots searched by the LLD
bias is extremely large: all possible intervals are looked
at to determine if they can accommodate the given
meeting. The number of slots searched is extremely
small as the information maintained in the hierarchy
helps in quickly identifying potential intervals to be
used for a meeting. The values for this metric grows
slightly with increasing 7/ to reflect increasing search
at the ground level by an invitee to come up with an
alternative bid to a proposal from the host, as more
and more hours on the calendar are reserved for other
meetings.

The observed metric of meeting hours missed with
different search biases is as expected, since agents start
failing to schedule meetings only when 7/is close to L.
Most of the meetings missed are either multiple agent
meetings or are long meeting requests arriving at the
end of the scheduling run. The value for this metric is
noticeably greater for the LLD and H bias than that
for LE bias for 7/ ranging from 80 to 120. In its at-
tempt to evenly schedule meetings across the calendar
length, the LLD search bias ends up fragmenting the
calendar space, and hence is unable to accommodate
a percentage of long meetings as 7/ increases above a
threshold value. An interesting result of our exper-
iments with the two organizations was that, though
the LE search bias leads to smaller values of meeting
hours missed in the larger organization, the propor-
tional savings obtained are far less than in the smaller
organization. This is because even though each agent

is relatively free towards the latter part of their sched-
ules when using the LE bias, individual schedules can
differ significantly in the exact intervals that are free in
these portions. As such, even with space compaction,
short meetings with large numbers of attendees may
not get scheduled.

Figure 2 shows that when using the LE bias, more
and more intervals of any given length are open on
the calendar as one proceeds from the front to the end
of the calendar. On the other hand, the LLD and
H search biases are able to deliver on the promise of
even density profiles across the length of the calendar.
Results are better than expected for the LLD bias be-
cause this bias only balances the host’s calendar, but
that seems sufficient in balancing each agents’ calendar
since everyone gets to be the host with roughly equal
frequency, and more importantly, they have a number
of meetings with themselves which smooth out their
respective density profiles.

Observations

There are several important observations to be made
given the results and analysis of the last section; some
of these reinforce our expectations, while a few provide
new insights to the properties of the search biases. Ob-
servations generally true for all the search biases con-
sidered are:

1. for any given 7/, the number of open intervals in-
creases with decreasing length of the intervals (in 
free interval that can accommodate a long meeting,
we can schedule a number of smaller meetings),

2. the number of intervals open for a given length is
a non-increasing function of 7/ (this is observed by
comparing different graphs like Figure 2 with vary-
ing 7"t).

Both LLD and H search biases generate even
density profile characteristics (DPC) across calendar
lengths in contrast to the skewed density profiles pro-
duced by the LE search bias. On the other hand, the
LE search bias leaves room for scheduling long meet-
ings, and hence, particularly in cases where 7t is close
to L, results in fewer meeting hours missed (smaller
MHM values) than the LLD and H search biases.
The purpose of building evenly dense profiles is to re-
tain the flexibility of scheduling HPSN meetings. If
that flexibility is obtained at the price of being un-
able to schedule some regular, run-of-the-mill meet-
ings, then that is often too high a price to pay. So,
depending on the importance of HPSN meetings, one
may either want to use the LLD or H search biases
in favor of the LE search bias across the range of 7/
values, or to 7/values below a threshold only.

Though meetings can be quickly scheduled (smaller
I) in small organizations by using the LE search bias,
as we consider larger organizations, it is clear that the
H bias is the most expedient bias for scheduling meet-
ings. Communication cost required to schedule meet-
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Figure 1: Performance of the LE, LLD, and H search biases on the metrics evaluating the scheduling cost
(MHM,CC, I, and SS) as 7/varies from 10 to 45.

ings is greater for H search bias than the other two
(of which, the values for LLD are higher than those
for LE search bias), because of the increased overhead
of the first iteration (as information about more days
needs to be exchanged). This problem may be solved
by multiple levels of the hierarchy; if 10 days were sep-
arated into two weeks, and a solution was found in the
least dense of the two weeks, communication cost for
the 5 days in the other week could be saved.

In terms of the slots searched metric, the H search
bias is a sure winner. In our past work, we have noted
that, in situations where concurrent scheduling of sev-
eral meetings is taking place, greater time spent in lo-
cal search will lead to increased probability of mutually
harmful interactions between scheduling processes that
share the same calendar (Sen & Durfee 1994). So, al-
though the significance of this metric is not apparent
in this simulation (with no concurrent scheduling), 
real-life this metric will greatly impact the other cost
metrics.

For all the search biases considered, we notice a
decrease in scheduling efficiency (as measured by the
meeting hours missed metric) with an increase in the

size of the organization. However, in larger organi-
zations (with more agents, longer calendars), the 
search bias takes the least number of iterations, pro-
vides more flexibility, and does not significantly sacri-
fice success rate of ordinary (non-HPSN) meetings (as
compared to the LE search bias). Hence, we prescribe
a switch in search bias from LE to H as the organiza-
tion grows. The use of LLD should be limited to sit-
uations where, even though the organization is small,
HPSN meetings are fairly common.

More detailed analysis of these runs revealed that
given the same calendar states of attendees, different
meetings (as characterized by number of attendees,
their calendars, meeting length, etc.) could be more ef-
ficiently scheduled by different search biases. More im-
portantly, the density profiles produced by one search
bias led to calendar states on which meetings can he
scheduled more efficiently by another search bias (for
example, scheduling early produces front-loaded cal-
endar, on which it is easy for the H and LLD biases
to locate the least dense portions). So, an autonomous
scheduler can perform better by switching between the
different search strategies as and when appropriate. In
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the following we present some analytical results that
enables these agents to decide on the most appropriate
search bias when asked to schedule a meeting.

Adaptive scheduling

The above experimental evaluation allows us to charac-
terize the relative strengths and weaknesses of the pro-
posed search biases. To improve the efficiency of the
meeting scheduling agents, we need to derive precise
analytical expectations of the performance, as mea-
sured by some given performance metrics, of these
search biases. This will allow the implementation of
intelligent, autonomous scheduling age.nts capable of
adapting to changing environmental conditions. In the
following, we present an analysis of the number of iter-
ations required to schedule meetings with the LE and
H search biases.

We first consider the LE search bias with the invitee
agents responding with acceptance or rejection mes-
sages (no counterproposals). In this scenario, a host
agent is trying to schedule a meeting with A invitees.
Let K = £ - ! + I be the number of places in which
a meeting of length I can a start on a working day of
length £. For invitee z, let n= ~_ K be the number
of these intervals open on the day under question. If
the host was using the one proposal per iteration, the
probability that it will take i iterations to schedule the
meeting is given by (Sen 1993)

,,
( )n.,= i- 1

J
(K)

H== 1
n~

(1)
If the host was proposing N intervals per iteration, the
probability that it will take i iterations to schedule the
meeting is given by

N*i

Now we analyze the H search bias. Let us assume
P agents (numbered 1,..., P) are involved in schedul-
ing a meeting of length I, and they have constructed
identical temporal abstraction hierarchies over the base
calendar space (linear ordering of calendar hours). For
any internal node in the hierarchy, we will calculate
the probability that one or more common intervals are
free in the base space of the calendars under that node,
for every attendee of the meeting. Let z be the node
in question. Since the hierarchies formed by the agents
are identical, every agent has a(I, z) intervals of length
! below this node of its abstraction hierarchy. Let the
number of intervals of length ! currently free under
node z for agent i he f~(/, z). We can then calculate
the following (see (Sen 1993) for details of the calcula-

tion):

P{At least one interval is free in each attendees cMendax
under node z}

k /E,=I (-1)
J I-l,_-, f,(l,~)

(3)
Given the two level hierarchy (days and hours) that 
are considering in this paper, probabilities for schedul-
ing under each day is calculated using Equation 3. The
days are then sorted by these probabilities, and the
agents negotiate over days in decreasing order of this
probability until a mutually free interval is found.

Given a particular scheduling situation, we can de-
velop probability mass functions and probability distri-
bution functions of the random variable corresponding
to the iteration at which scheduling is completed (using
Equations 1 or 2 for the LE search bias and Equation 3
for the H search bias). This information can be used to
calculate the expected number of trials to schedule the
meeting using the two announcement strategies. The
strategy that leads to a lower expected number of trials
to schedule the meeting is then adopted. This method
of search bias selection is completely flexible in the
sense that given any new meeting to schedule, the most
appropriate choice is made. We plan to experimentally
evaluate the savings obtained by such a flexible choice
of bias against the cost of fixed bias scheduling.

Conclusion
In this paper, we have argued in general terms for de-
veloping surrogate agents that make decisions based
on carefully-constructed models of the application do-
main, and we have more specifically highlighted the
importance of retaining flexibility for future resource
requests when searching for a solution to a cur-
rent resource scheduling problem. We have imple-
mented and evaluated several approaches for biasing
the distributed search process in a distributed meet-
ing scheduling application. Our results indicate that
hierarchical distributed search will be increasingly im-
portant as the scheduling problems are scaled up to
many agents and long schedules. More importantly,
we have identified the need for an adaptive choice of
search bias, and provided a probabilistic model that
allows us to make this choice appropriately.

Our future efforts will involve addressing broader
class of scheduling problems using the techniques de-
veloped here. We are particularly interested in the
dynamic, concurrent scheduling of a multitude of
resource-constrained project networks (possibly man-
aged by different departments in an organization) with
significant resource interdependencies (Bell 1989). 
also believe that our approach of distributed, incre-
mental scheduling in a dynamic domain can be success-
fully applied to a wide variety of scheduling problems

342 ICMAS-g$

From: Proceedings of the First International Conference on Multiagent Systems. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



on which other AI techniques have been used (Noronha
& Sarma 1991). In particular, we have showed that
our proposed system of distributed contract-based ne-
gotiation can be effectively used in a manufacturing
environment (Sen & Durfee 1993). We are currently
implementing an distributed meeting scheduler on a
local area network supporting workstations, PCs, and
Macintoshes.
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Figure 2: Performance of the LE, LLD, and H search
biases (from left to right) on the metric evaluating
quality of schedule generated (DPC) for the case
where 7/= 100.
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