
Effective Tag Mechanisms for Evolving Coordination

Matthew Matlock
matt-matlock@utulsa.edu

Sandip Sen
sandip@utulsa.edu

Mathematical & Computer Sciences Department
University of Tulsa

Tulsa, OKlahoma, USA

ABSTRACT
Tags or observable features shared by a group of similar
agents are effectively used in real and artificial societies to
signal intentions and can be used to infer unobservable prop-
erties and choose appropriate behaviors. Use of tags to se-
lect partners has been shown to produce stable cooperation
in agent populations playing the Prisoner’s Dilemma game.
Existing tag mechanisms, however, can promote coopera-
tion only if that requires identical actions from all group
members. We propose a more general tag-based interac-
tion scheme that facilitates and supports significantly richer
coordination between agents. Our work is motivated by pre-
vious research that showed the ineffectiveness of current tag
schemes for solving games requiring divergent actions. The
mechanisms proposed here not only solves those problems
but are effective for other general-sum games. We argue
that these general-purpose tag mechanisms allow new ap-
plication possibilities of multiagent learning algorithms as
they allow an agent to reuse its learned knowledge about
one agent when interacting with other agents sharing the
same observable features.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms, Performance, Economics

Keywords
tags, Prisoner’s Dilemma, coordination, evolution, learning,
games

1. INTRODUCTION
Both humans and artificial agents have bounded cognitive

capabilities and other resource limitations. To effectively re-
spond to real environments, therefore, such agents need to
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leverage their experience and extrapolate conclusions. Such
inductive generalizations are not guaranteed to work or even
produce preferable outcomes, e.g., social stereotypes used
in human societies are often discriminatory. However, they
form a core component of human reasoning which allows us
to manage the scale and complexity of life’s challenges [13,
28]. We are particularly interested in the kind of generaliza-
tion which allows agents to reuse their knowledge gleaned
from interaction with one agent in interactions with a simi-
lar agent.

Most of the research on learning in agents and multiagent
systems involves learning to interact effectively with another
agent [21, 33]. In single agent learning, one agent is privy
to the past behavior of another agent and learns a model
of the latter to interact effectively with that agent [6, 34].
In multiagent learning, two or more agents repeatedly inter-
act with the goal of converging to some equilibrium policies
with desirable properties [19]. An interesting approach re-
lated to this idea is that of learning by imitation wherein an
agent mimics the behavior of a capable agent to improve its
problem-solving performance [22]. Evolutionary and adap-
tive stratagies used in this and other similar research seek
to expand and study this imitation [3, 5].

The focus of current work in this field, however, is comple-
mentary in the sense that rather than simply adopting an-
other agent’s successful strategy we want to investigate how
a successful strategy against one agent can be used against
other opponents. Another viewpoint on this is found in the
following question: if a strategy is found to be effective in
interactions with one opponent, against which other agents
could it also be effectively used? In that sense the current
work is akin to the work on recommender systems [9, 16,
23, 29] where the goal is to identify groups of users who
share common interests. Thus, if a new user can be ac-
curately identified as belonging to an existing user group,
recommendations that were useful for the existing group
can be effectively reused for the new user. Though recom-
mender systems have been an active area of research in re-
cent years with high potential applications1, the possible use
of user-stereotypes have been recognized early in user mod-
eling, adaptive interfaces, and information retrieval commu-
nities [4, 7, 20, 25, 24, 30, 35]

Unfortunately, very little work in mutliagent systems has

1Web-based commercial recommender systems are prof-
itable and even announce challenge problems with signif-
icant payoffs, e.g., Netflix recently announced a 1 million
dollar prize for any system that performs significantly bet-
ter than their recommendation engine.



been done in an effort to classify agents into groups with
similar behavior. Such clustering in agent space can signif-
icantly reduce the problems faced by agents when learning
to interact with other agents in an environment. The only
relevant work in this area can be traced to John Holland’s
proposal of “tags” as a primitive means of communication
that can aid in the evolution of a group [12, 26]. Tags are
observable features of individuals that do not influence their
behavior but are shared due to common heritage. Both tags
and behaviors are external manifestations of inherited ge-
netic material. As a result, even though tags do not directly
encode or constrain behavior, they correlate closely with
behavioral similarity between individuals with shared an-
cestry. As agents sharing tags generally behave in a similar
fashion, a strategy effective against one agent is likely to be
effective against another agent with the same or similar tag!
This can allow us to reuse the policy we learned against one
agent against all agents belonging to the same tag cluster.

Whereas it is possible to study knowledge reuse in arbi-
trary multiagent environments, we will use stylized inter-
actions represented as stage games [18]. There has been
considerable recent research in multiagent systems involv-
ing one-shot or repeated interactions of stage games [8, 15].
In particular, the Prisoner’s Dilemma (PD) game (see Fig-
ure 1) has received widespread attention in both game the-
ory and multiagent learning research. In this game, the
only Nash Equilibrium is the strategy profile (D,D) which
is also the only non-Pareto-optimal outcome! The (D,D)
strategy profile is dominated by the (C,C) strategy profile.
Unfortunately, in a single-shot PD game, rational play will
produce the Nash Equilibrium strategy profile. In repeated
or iterated play, however, learning approaches can produce
higher payoff by choosing the (C,C) strategy profile. Nu-
merous researchers in game theory and multiagent systems
have attempted various mechanisms to induce cooperation
in iterated PDs [2, 31, 32].

C D
C R, R S, T
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Figure 1: Utilities to players in a two-player Pris-
oner’s Dilemma game. Constraints on the utility
values are T>R>P>S and 2R>T+S>2P.

We are particularly interested in recent work using tags
in a population of interacting agents [10, 11]. Tags have
also been used by other researchers to promote cooperation
in variations of PDs [26, 27]. Whereas these papers pro-
vided a reasonable high-level explanation of how the use of
tags promotes cooperation, a detailed analysis that clearly
explains the fundamental subtleties of the interactions in
the population was missing. As a result, design of tag sys-
tems was based on trial and error and did not explain why
certain parameter choices for such systems succeeded in in-
ducing cooperation whereas others did not. More recently,
McDonald and Sen [17] claimed that current tag mecha-
nisms can promote cooperation only when cooperation can
be achieved by imitation of behavior. Though McDonald
and Sen were able to provide a systematic explanation of
how tag-based cooperation evolved in the iterated PD, they
failed to evolve cooperation in simple congestion games,
e.g., the “anti-coordination” (AC) game (Figure 2). where

agents received high-payoff only if they chose different ac-
tions. The claim was that imitation does not produce high
payoff in this game, and hence cooperation (or coordination)
could not be sustained.

0 1
0 L, L H, H
1 H, H L, L

Figure 2: Utilities to players in Anti-Coordination.
Constraints on the utility values are H > L.

We believe that though McDonald and Sen raise an inter-
esting point, a richer framework and interpretation of tags
will address the limitations they observe. The current tag
mechanisms are constrained to be self-matching types. Thus
an agent only interacts with other agents with identical or
similar tags. To extrapolate such constraints to human so-
cieties, this would mean that we limit our interactions to
people with whom we share some external features, e.g.,
fashion choices. Though some people do limit themselves to
small groups or clans who dress and behave similarly, most
of us interact with a much larger and more diverse group of
people. In some real-world situations, however, we do reuse
knowledge learned while interacting with one individual to
interact with another individual who belongs to the same
group or cluster, e.g., knowledge of certain social norms, re-
ligious beliefs, or even habits of one person can be used to
predict the preferences and actions of another person. We
then routinely choose to interact with members of groups
other than our own. In some cases, we might even be bet-
ter off partnering with members of a different “group”, e.g.,
when complementary resources, capabilities, knowledge, etc.
are required.

In multiagent domains in general, cooperation requires a
richer, more diverse collection of behaviors than imitation.
It was unclear from the current state of knowledge whether
self-matching tags can support cooperation in a broad spec-
trum of multiagent problems. From the discussion above,
however, it seems that it would be a natural next step to
generalize tag matching to allow for interaction between in-
dividuals with different tags, i.e., belonging to different so-
cial groups. While there has been isolated work in evolu-
tionary cooperation in PD by dividing the population into
clans who employ different strategies for playing with agents
within and outside their clans [14], there has been no prior
work of inter-tag-group matching for evolving coordination.
We propose a novel inter-tag-group matching mechanism
that allows agents to coordinate effectively with members
of other tag groups. We introduce the concept of matching
tag patterns and other auxiliary mechanisms to facilitate
the evolution of coordination and evaluate these schemes on
the anti-coordination and prisoners dilemma games.

2. TAG-BASED EVOLUTION OF COOPER-
ATION

The use of tags to bias interactions in agent populations
playing the Prisoner’s Dilemma game has been suggested
by [1, 12]. Riolo [26] modeled agents with a stochastic strat-
egy, based on Tit-For-Tat, combined with a real-valued tag
and a real-valued bias, both on the interval [0, 1]. Agents
then attempt to pair up, where the difference between the



agents’ tags is less than each agents’ bias. If no suitable pair-
ing can be found within a small number of trials, the agent
simply chooses a partner at random. When each agent has
an identical, fixed bias, Riolo’s model results in increased
performance for the society. However, when each agent’s
bias is allowed to evolve, behavior varies drastically accord-
ing to initial conditions and the results are less clear.

Hales and Edmonds [10] used a different model where the
population consists of a collection of agents represented as
a binary string of l + 1 bits. The first bit represents a pure
strategy (always cooperate or always defect), while the re-
maining l bits are the tag. In each population generation,
every agent plays a PD game against one other agent with
an identical tag. If an agent has a unique tag in the popu-
lation, it plays against a randomly selected opponent. The
next generation is formed via fitness proportionate repro-
duction where the fitness of an agent is the payoff received
in this round of play. Mutation is then applied to each bit.
This process is described in Algorithm 1. Hales was able to
develop sustained cooperation but with only large tag sizes.
We recount Hales’ [10] explanation of how tags help pro-
mote cooperation in the PD game. A homogeneous group
of cooperators will prosper and grow. When such a group is
invaded, via mutation of the strategy or tag, by a defector,
the defector will prosper, resulting in imitators in the next
generations. Over time, the group will fill with defectors,
resulting in declining performance and eventual extinction.
Thus defectors, even if formed by chance, will not live long,
and hence a majority of the population will be cooperators.
There was no clear explanation of why large tags were re-
quired to sustain cooperation.

Algorithm 1 Hales and Edmond’s model of population evo-
lution with tags.

for some number of generations do
for each agent a in the population do

Select a game partner agent b with the same tag (if
possible)
Agent a and b invoke their strategies and a gets cor-
responding payoff.

end for
Reproduce agents in proportion to their average payoff
(with some low level of mutation)

end for

McDonald and Sen [17] observe that an individual with
a unique tag, i.e., a singleton, can prosper if the randomly
chosen individual it interacts with is cooperative. If the sin-
gleton is cooperative, it will perform well, probably leading
to more agents copying its tag bits and strategy, causing
the group to expand as a group of cooperators. If the sin-
gleton is a defector, it will obtain a high reward, but when
others copy its strategy and tag, all agents in the resulting
group will be defectors. They will then perform poorly in
the following generations, and the group will die out. They
combined this observation with that of Hales’ explanation
of population evolution presented above to provide a more
complete and detailed picture of the evolution of coopera-
tion in PD with tags: At any point in time there are many
groups in the population. Homogeneous groups of coop-
erators expand through preferential selection. Ultimately
such an expanding group is invaded, mostly through strat-
egy mutation, by a defector. As the defector prospers, more

copies of it are made, and the corresponding deteriorating
performance leads to group extinction. To sustain coop-
eration, therefore, at any point in time, there has to be a
sufficient number of homogeneous cooperative groups in the
population such that mutation cannot simultaneously infect
a majority of them with defectors. Mutation is the primary
mechanism to create this necessary diversity of tag groups2.
If tag mutation rate is low, large tags are needed to guar-
antee sufficient diversity of groups. To support this analysis
McDonald and Sen were able to sustain cooperation with
much smaller tag lengths when they increased the tag mu-
tation rate.

Another, perhaps more important, but controversial claim
by McDonald and Sen involved the limitation of self-matching
tags. They argued that the basic premise of tags was that
agents with similar tags had similar strategies and hence
when agents are playing other agents with the same tag
they are playing the same strategies. In games like PD, such
behavior imitation leads to preferable Pareto-optimal out-
comes. If identical strategies do not produce good outcomes,
e.g., in the “Anti-Coordination” game then tag based evo-
lution will fail to produce cooperation. Their experimental
results with the AC game confirmed this conjecture.

We, however, believe that the limitation identified by Mc-
Donald and Sen holds only for self-matching tags. More
general tag frameworks, such as the ones that incorporate
the following proposals, transcend these limitations.

We now propose three new tag mechanisms with corre-
sponding motivations:

Tag matching patterns (one and two-sided): To allow
an agent to interact with members belonging to other
tag groups, we include a tag-matching string, M de-
fined over the alphabet {0, 1, ∗} where we assume that
the tags are binary strings of length L, and the * is a
don’t care symbol. In one-sided matching, an agent i

can interact with an agent j if Mi matches Tj , the tag
of agent j. Mi matches Tj iff ∀k = 1, . . . , L, Mi(k) =×
∨Mi(k) = Tj(k). If i matches j, only i, and not j

receives the payoff from i’s interaction with j. In two-
sided matching, an agent i can interact with an agent j

if Mi matches Tj and Mj matches Ti. While one-sided
matching allows an agent to select partners, two-sided
matching allows more stringent pairings that require
mutual consent.

Payoff sharing: In some real-life situations side-payments
are allowed, e.g., payoff distributions in coalitions. Payoff-
sharing is a similar mechanism by which an agent shares
a fraction, α of its payoff with its opponent. Such shar-
ing can encourage self-interested agents to converge to
social-welfare maximizing outcomes rather than out-
comes obtained with safe or greedy strategies.

Paired reproduction: This is a more subtle operator mo-
tivated by McDonald and Sen’s analysis of the oper-
ation of self-matching tags in PD games. Sustaining

2Mutation will often form singletons in the population. Note
that the current framework allows singletons to play with a
randomly selected member from the population. This is a
rather key “boundary condition”, if singleton agents were
not allowed to play, i.e., their fitness was to remain at zero,
they would not be reproduced and cooperation could not be
sustained in the PD.
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Figure 3: One-sided matching in the AC game.

coordination requires multiple “groups of cooperators”
in the population so that if a few of these are disrupted
other cooperators can fill the niche. While tag mu-
tation is sufficient to create such diversity when self-
matching tags are used, special reproduction opera-
tors which make copies of matching pairs of individu-
als with mutations at corresponding places on the tag
of one and the matching string of the other, to pre-
serve the match after mutation, is necessary. Paired
reproduction, then is an infrequent special reproduc-
tion operator used when tag matching patterns are
used, and is applied with probability ppr. It copies
over a randomly selected matching pair of individuals
and alters the tag and matching tag bits in the pair
with the probability of mutation such that they con-
tinue to match thereafter.

3. EXPERIMENTAL RESULTS
Now we present experimental results to evaluate our new

tag mechanisms for promoting coordination in the AC and
PD games. Unless otherwise noted, the experimental results
were obtained using a population of 100 agents with tag
lengths of 8 bits. The AC and PD games represent situations
where homogeneous and heterogeneous optimal strategies
are required for effective coordination. Imitation is effective
in PD but detrimental in AC.

McDonald and Sen [17] noted that self-matching tags could
only generate 50% coordination rate for the AC game which
is similar to random action selection by the agents. Sig-
nificantly higher coordination rates were obtained on this
problem when one-sided matching was used (see Figure 3).
Though the mean coordination rate improved significantly,
the standard deviation is significant which indicates that it
is difficult for the system to maintain a stable equilibrium.
This suggests that the one-sided matching method needs
further adjustment.

The problem with a simple one-sided matching scheme is
that it does not necessarily support the creation of pairwise
optimal interactions. For example, in this scheme, if agent
A’s matching string MA matches agent B’s tag TB , A can
play with B without MB matching TA. Therefore, even if
A receives a high payoff playing with B, B may receive a
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Figure 4: Effect of tag length in the AC game.

poor payoff playing someone else. Thus B may be replaced
and this in turn may jeopardize A’s survival. This insta-
bility can by demonstrated by varying the size of the tag
space as shown in Figure 4. As tag length increases, coor-
dinated actions decrease as it becomes more difficult to find
matches in the tag space, and even more so to find opti-
mal matches. Simply choosing a smaller tag space has its
own pitfalls though. Tag groups must remain homogeneous,
otherwise when an agent A matches a group of agents G in
the population, and one or more of G’s member’s strategies
mutate, it will cause A to have a non-zero probability of
non-optimal interaction. This defector in group G can ul-
timately lead to the death of the group that A belongs to,
which may lead to instability in group G and its ultimate
demise. Thus, if too few groups exist due to a small tag
space, the system will be highly unstable due to a lack of
homogeneous groups. The choice of an appropriate tag space
is clearly important. However, simply optimizing the size of
tag spaces will not produce a solution to all the problems
posed by tag matching schemes.

We next tried the one-sided matching scheme on the PD
game (see Figure 5). Much to our chagrin, there is an ex-
treme lack of cooperation in the population in this case.
In fact, over many runs of the one-sided matching system,
convergence to the Nash Equilibrium of the PD was the con-
sistent result. To have cooperation in PD we must have two
cooperative agents with matching strings that match each
other’s tags. However, in random initializations, all of these
criteria being satisfied simultaneously is both rare and un-
likely to last due to mutations which cause heterogeneity to
be lost in any cooperating group. Additionally, as observed
earlier, many such cooperating groups are needed in order to
ensure the survival of cooperating agents. It is much more
likely in a one-sided matching system that a cooperator A

matches a cooperator B who matches a defector C, leading
to the ultimate death of both cooperators. Thus, the system
converges to a non-cooperative equilibrium.

One solution to this problem lies in ensuring that both
interacting pairs remain alive in the population. One way
of doing this is by sharing a percentage of the payoff be-
tween the two agents playing. With payoff sharing, as in
the previous example, an agent A can now share some of
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Figure 5: One-sided matching in the PD game.
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Figure 6: Payoff sharing in the AC game.

its high payoff with B, thus keeping it alive even though
it is exploited by C. Similarly, a defector will share some
of its high payoff with an interacting cooperator to keep it
alive. In Figure 6 we observe that the payoff-sharing scheme
effectively promotes coordination in populations of agents
playing the AC game for α = 0.2.

For runs of the PD game, payoff sharing produced inter-
esting results in creating populations of cooperators. Fig-
ures 7 (a) and (b) show runs of the PD game with varying
amounts of payoff sharing. As the sharing percentage α

increases from 0.2 to 0.4, the population increases in coop-
erative interactions and stability for the same reasons that
the Anti-Coordination game gains stability. That is, in the
case that agent A, a cooperator, matches agent B, also a
cooperator, but B does not match A, B will get a payoff
from its interactions with A, regardless of whether or not
it’s other interactions are optimal. The higher fitness val-
ues here provide B a higher chance for survival during the
evolutionary selection process, and thus makes the system
more stable. The only drawback is that, though payoff shar-
ing works for both AC and PD games, it may be used only
when side payments are allowed.

When side payments are not allowed, we need other mech-
anisms. Next we evaluate two-sided matchings on the AC
game (see Figure 8). This system produces a high number of
coordinated interactions but cannot match the stability pro-
vided by payoff sharing. Groups that undergo mutation and
the subsequent loss of homogeneity have no fall-back payoff
to help them survive until homogeneity is restored. Thus
it is more difficult for the system to return to equilibrium
and there is a short, but noticeable down period for coordi-
nated interactions before the system can grow new groups
to replace the lost groups.

Double matching completely fails to solve the fundamen-
tal problems in the PD game (see Figure 9). Cooperating
groups are formed in this system, seen as spikes in the figure.
However, once homogeneity is lost in any of these groups,
they die out almost immediately.

The payoff sharing and matching approaches form parts
of a solution to the problem presented in forming large num-
bers of interacting groups which can survive indefinitely. Us-
ing the two methods simultaneously leads to a system which
satisfies the properties necessary for the survival of cooperat-
ing groups. Payoff sharing provides a suboptimal group with
the chance of survival until it can restore its own equilibrium,
while two-sided matching ensures that interactions will oc-
cur in a pairwise format. Figures 10 (a) and (b) demonstrate
the effectiveness of this system for both Anti-Coordination
and Prisoner’s Dilemma. The system is not quite as sta-
ble as simple payoff sharing for Anti-Coordination, since
the double matching makes it easier for random mutations
to leave an agent with no group to interact with, either
due to a matching string mutation or tag mutation which
in turn causes double matching to be unable to locate a
suitable partner. However, the system does achieve some
improvements in the PD game. Though the difference is
marginal between Figure 7 (b) and Figure 10 (b), the com-
bined system performs consistently better on average than
payoff sharing alone.

Finally, we introduce the paired reproduction operator
that is specifically tailored to the needs of tag based systems
with matching strings. From our experiments, we have seen
that the necessary criteria of successful interaction is that
tag groups form pairwise interactions with each other, that
these interactions are optimal, and that there are enough
groups in the tag space to tolerate the introduction of de-
fectors and the subsequent loss of groups. If we add paired
reproduction to the standard set of genetic operators in tag
systems, we obtain an elegant solution to the problem. The
performance of this mechanism is just in the preliminary
stages of testing, however the results for both Prisoner’s
Dilemma and Anti-Coordination games are encouraging (see
Figures 11 (a) and (b)). Though the corresponding coordi-
nation levels are lower than that with payoff sharing, this
scheme can be used when side payments, and hence payoff
sharing, are disallowed. It should be noted that in our ex-
amples we give this new operator a relatively low frequency.
This is due to the problems of matching discussed earlier in
the paper. Since the operator is designed to create new in-
teracting groups in the tag space so as to address the loss of
groups, it adds many more groups to the space than would
exist under the tag systems we have demonstrated. Thus,
if we use this operator too often we will end up with many
small groups which have a higher likelihood of being re-
placed. This would lead to their partner group’s death and
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(b)

Figure 7: Payoff sharing in the PD game: (a) α = 0.2, (b)α = 0.4.
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Figure 8: Two-sided matching in the AC game.

a less stable equlibrium. Thus, we chose a low frequency of
reproduction to counter-balance this effect.

4. CONCLUSIONS
We argue for the development of mechanisms for reusing

effective policies for interacting with one agent against a
similar agent. Identifying “similar” agents can be difficult
in general. When agents copy both internal strategies and
external features of other, successful, agents in the popu-
lation, we have an evolutionary process that groups agents
with similar genetic makeup and external non-coding fea-
tures. Such external features or tags can help identify indi-
vidual agent types and allow us to reuse learned coordination
policies with one agent with other agents of the same type.

Previous research on using self-matching tags to evolve co-
operation had succeeded only on problems where imitation
(identical moves) is necessary for cooperation. We introduce
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Figure 9: Two-sided matching in the PD game.

and validate more general tag mechanisms that allow intra-
group matchings and is found effective on both problems
that require identical and problems that require distinct ac-
tions to produce coordinated behavior. In particular, fitness
sharing seems to be particularly promising when side pay-
ments are allowed, and two-sided matching with paired re-
production works reasonably well in other cases. We plan to
run further experiments with combinations of these mech-
anisms. Additional experimentation with larger range of
parameter values and combination of parameter ranges (tag
length, payoff sharing fraction, etc.) will also be performed.

While the new tag mechanisms are reasonably effective,
there is scope for improvement in coordination performance.
We plan to study the inefficiencies of the current method to
identify improvements. We plan to test these mechanisms on
a larger class of coordination problems including the Chicken
Game, the El Farol bar problem, etc. We also intend to
evaluate tag-based coordination in domains with delayed,
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Figure 10: Payoff sharing combined with two-sided matching: (a) AC game, α = 0.2, (b) PD game, α = 0.4.

rather than immediate, feedback.
We believe that we have merely scratched the surface of

the possibilities for using tags for evolving coordinated ac-
tions between agent clusters. Tags can be generalized to
arbitrary patterns and richer representations to support sig-
nificantly more complex interactions between agents. We
are far from representing the complex and nuanced visual,
verbal, and other physical cues that serve as “tags” for com-
munication between human and animal groups, but careful
study, abstraction, modeling, and implementation of such
external feature-based communication and their relation to
successful coordination, signaling, and negotiation can pro-
vide important insights into developing effective coordina-
tion strategies for groups of artificial agents.
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