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ABSTRACT

In contrast to classical game theoretic analysis of simultaneous and
sequential play in bimatrix games, Steven Brams has proposed an
alternative framework called the Theory of Moves (TOM) where
players can choose their initial actions and then, in alternating turns,
decide to shift or not from its current action. A backward induction
process is used to determine a non-myopic action and equilibrium
is reached when an agent, on its turn to move, decides to not change
its current action. Brams claims that the TOM framework captures
the dynamics of a wide range of real-life non-cooperative nego-
tiations ranging over political, historical, and religious disputes.
We believe that his analysis is weakened by the assumption that a
player has perfect knowledge of the opponent’s payoff. We present
a learning approach by which TOM players can learn to converge to
Non-Myopic Equilibria (NME) without prior knowledge of its op-
ponent’s preferences and by inducing them from past choices made
by the opponent. We present experimental results from all struc-
turally distinct 2-by-2 games without a common preferred outcome
showing convergence of our proposed learning player to NMEs.
We also discuss the relation between equilibriums in sequential
games and NMEs of TOM.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—

Multiagent systems; 1.2.6 [Artificial Intelligence]: Learning—Knowl-

edge acquisition

General Terms
Performance, Experimentation
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1. INTRODUCTION

Learning and reasoning in single or multistage games have been
an active area of research in multiagent systems [1, 2, 4, 5, 6, 8,
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9, 10, 7]. Most of this research has concentrated on simultaneous
move games with solution concepts like Nash equilibria [11, 12].
Though dynamic or extensive-form games have also received atten-
tion in game theory, Brams have argued for an alternative frame-
work called Theory of Moves (TOM) and its logical extension to
anticipation games.

In the TOM framework, agents have knowledge of the starting
state of the game and make sequential and alternate, rather than
simultaneous moves. The basic TOM formulation involves a com-
plete information 2x2 bimatrix game where players have perfect in-
formation about both payoff matrices and know the starting strategy
profile. This means that the play starts at a certain state from which
the two players can move in alternate turn. The players decide their
move based not only the feedback they will receive if they change
their current strategy and hence move to a new state, but also on
the possible counter-move of the opponent, its own counter-move
to the opponent’s counter-move, and so on. With two moves per
player, a cycle can result in at most four moves. The rules followed
by a TOM player are presented in Theory of Moves Framework
Section. The basic idea is that both players make moves projecting
sufficiently ahead into the future but assuming that cycles should
be avoided. From the starting state both players are asked if they
want to move. As we are dealing with the basic TOM framework
of 2x2 games, i.e., each player has two actions (pure strategies or
strategies, in short), moving corresponds to changing the current
strategy and not moving corresponds to continue using the current
strategy. To make this decision, the player looks three moves ahead
and uses backward induction to decide whether moving will be ben-
eficial or not. If both players decide not to move, the starting state
is the equilibrium. If only one player decides to move, the state
changes and it is the other player’s turn to move who will use a
two-move lookahead to decide its move, and so on. The resulting
state where a player decides not to move is an equilibrium. If both
players decide to move, we have an indeterminate outcome which
can produce two different equilibrium states depending on which
player moves first from a particular starting state. These equilibria
are called non-myopic equilibria (NME) as player uses look-ahead
to select equilibrium states.

It is worth noting that with perfect information and both players
following TOM rules, it is not actually necessary to carry out the
actual play. Given a starting state, each player calculates the equi-
librium state that would result if it was to move first. If the two
states are equal or if one of the players decide not to move, then
there is a unique (NME) given the starting state. If, however, both
players decide to move and their respective first move will result
in different equilibrium states, we have an indeterminate situation
with multiple NMEs given the initial state. The players can cal-
culate the different NMEs resulting from each of the four initial



states.

The respective payoffs to the players from the NMEs given each
of these states can then be used as the payoff matrix of an anticipa-
tory game (AG). The Nash equilibrium of this AG, can be used to
choose the starting state of the play in TOM. In this paper, we do
not concern ourselves with how the initial state is chosen. Rather,
we focus on learning to converge to NMEs given any starting state
and without the knowledge of the opponent’s payoff matrix or pref-
erence over states.

It should also be noted that since TOM assumes alternate moves,
only relative values of the payoffs are required and not absolute
values. To see why this is the case, note that at every stage of the
game, an agent is deciding whether to move or not, i.e., choosing
between two adjacent cells in the payoff matrix. Thus a total pref-
erence order over the states is sufficient to make this decision. As
such we can work with only structurally distinct ordinal games. In
a later section we outline how to construct this set of games.

Brams argues convincingly that TOM play can be used to model
a wide range of real-life scenarios [3]. While we agree with most of
his arguments, we believe that a serious weakness in the basic TOM
framework is the assumption of complete information. Brams dis-
cusses the issue of incomplete information in large games incor-
porating voting among players, but does not give a complete treat-
ment that this topic deserves. We believe that in real-life scenarios,
a player is unlikely to have access to the payoff of the other player,
and has to make its decisions based on only its own payoff matrix
and that of the observed decisions of the other player in past scenar-
ios and it also may not able to negotiate with others. This motivates
us to develop a learning approach that can approximate the prefer-
ences of the opponent, and using that, decide on own actions that
will consistently produce outcomes identical to TOM players with
complete information.

2. STRUCTURALLY DISTINCT 2X2 ORDI-
NAL GAMES

In the current paper, we will only consider a subset of the possi-
ble 2x2 payoff matrices where agents have a total preference order
over the four possible states. We will use the numbers 1, 2, 3, 4, as
the preference of an agent for a state in the 2x2 matrix, with 4 be-
ing the most preferred. The following discussion allows us to count
the number of structurally distinct matrices. For a more elaborate
discussion see [13].

Agent A’s lowest payoff can be combined with four possible pay-
offs for agent B. For each such combination, there are three payoffs
to agent B that can be combined with the next-to-lowest payoff, and
two payoffs to be combined with agent A’s second most-preferred
payoff, and the remaining one to be paired with agent A’s highest
payoff. This results in 41=24 sets of four pairs of numbers. To gen-
erate a bimatrix game, we have to distribute a given set of four pairs
over the four states of the matrix. This can be done in 3!=6 ways:
put the first pair in one corner, one of the remaining three in the
opposite, and then there will be two ways of placing the last two
pairs. Though this results in 24 x 6 = 144 possible games, they
are not all distinct. Some pairs of these matrices are identical if
the row and column players are renamed in one of the pair, i.e., the
payoff matrices in one are transposes of the payoff matrices in the
other. However, the payoff matrices where the off-main-diagonal
payoffs to the two players are identical, do not have corresponding
matching matrices. There are 12 such matrix pairs. Hence the total
number of distinct 2x2 ordinal games is 3% + 12 = 78. Out of
these, there are 57 games in which there are no mutually preferred
outcomes. These are often referred to as non-conflicting games.

Brams lists all of these games, together with their NMEs [3] and
the matrix numbers used in this paper correspond to those used by
Brams. Of these 57 games, 31 have a single NME, 24 have two
NMEs, and only 2 have three NMEs.

3. THEORY OF MOVES FRAMEWORK

In the TOM framework, players alternate in making moves and
think ahead not just to the immediate consequences of making moves
but also to the consequences of counter-moves to these moves,
counter-counter-moves, and so on. TOM extends strategic think-
ing into the more distant future than most other dynamic theories
do. To incorporate this concept TOM has specific rules. The rules
of play of TOM for two-person games, which describe the possible
choices of the players at each stage of play, are as follows [3]:

1. Play starts at an outcome, called the initial state, which is
at the intersection of the row and column of a 2x2 payoff
matrix.

2. Either player can unilaterally switch its strategy, and thereby
change the initial state into a new state, in the same row or
column as the initial state. The player who switches is called
player 1 (P1).

3. Player 2 (P2) can respond by unilaterally switching its strat-
egy, hereby moving the game to a new state.

4. The alternating responses continue until the player (P1 or P2)
whose turn it is to move next chooses not to switch its strat-
egy. When this happens, the game terminates in a final state,
which is the outcome of the game.

5. A player will not move from an initial state if this move

e leads to a less preferred final state (i.e., outcome); or

e returns play to the initial state (i.e., makes the initial
state the outcome).

6. Given that players have complete information about each other’s
preferences and act according to the rules of TOM, each
takes into account the consequences of the other player’s
rational choices, as well as its own, in deciding whether to
move from the initial state or later, based on backward in-
duction. If it is rational for one player to move and the other
player not to move from the initial state, then the player who
moves takes precedence: its move overrides the player who
stays, so the outcome will be induced by the player who
moves.

Let’s take the pay-off matrix as follows:

Matrix 13 : Chplayer
C1 C2
Rplayer r1 (3,4) (4,1)
ro (1,2)  (2,3)

According to TOM, play may begin at any state and any one of the
two players can start the game. To explain the working of TOM we
assume (a) it is a complete-information game and (b) each player
knows that the other player plays according to TOM.

Initial State: (3,4)

e Suppose R moves first. The counter-clockwise progres-
sion from (3,4) back to (3,4) is as follows:

R C R C R
(3,4) —lc (1,2) — (2,3) — (4,1) — (3,4)
S (3,4) (3,4) (3,4) (3,4)



We will illustrate the backward induction process for
this case only and use it without further explanation in
following cases. S denotes the state by which R or C
can reach by estimating backward induction. R looks
ahead 4 states and finds that C will move from state
(4,1) to (3,4) as it gains more by doing so. Following
backward induction, R reasons that if it is put in state
(2,3) it can expect to get (3,4) by moving (as C will also
move from (4,1)). Following the same reasoning, R be-
lieves C will move from state (1,2). Hence it concludes
that if it were to move from state (3,4) the play will cy-
cle. Therefore, R will stay at (3,4) according to rule 5.
This special type of blockage is indicated by “|c” (for
cycling) following the arrow.

e Suppose C moves first. The clockwise progression from

(3,4) back to (3,4) is as follows:
C R C R C
(3,4) —| 4,1) =] (2,3)— (1,2) — (3,4)
S (3,4) (4,1) (3,4) (3,4)

If C starts there is blockage at the start. The usual
blockage is indicated by “|” following the arrow.That
means, if C moves from this state it will get lesser pay-
off and for this C prefers to stay at initial state.

So, if the game starts from the state (3,4) none of the players
are interested in moving and the outcome (3,4) is an NME.

Initial State: (4,1).

e Suppose R moves first. The clockwise progression from
(4,1) back to (4,1) is as follows:
R C R C R
4,1) -] (2,3)— (1,2) > (3,4) -] (41)
S (41 (3,4) (3,4) (3,4)
There is blockage at first. So R prefers to stay at initial
state.

e Suppose C moves first. The counter-clockwise progres-

sion from (4,1) back to (4,1) is as follows:
C R C R C
4,1)— (3,4)—| (L,2) =] (2,3) > (41)
S (3,4) (3,4) (1,2) (4,1)
According to TOM rule, C wants to go to state (3,4)
and hence it prefers to move.

So, if play starts at state (4,1), there is a conflict: R wants
to stay but C wants to move. But because C’s move takes
precedence over R’s staying, the outcome is that which C
can induce, namely, (3,4), which is the NME.

Following the procedures as described above, it can be observed
that if game starts at state (2,3), both player will prefer to move
and state (3,4) will be achieved as terminal. So, the NME is (3,4).
Similarly, if game starts at state (1,2), both player will again pre-
fer to move and hence the induced state will be (3,4) making the
state NME again. So, this pay-off matrix has only one Non-Myopic
Equilibrium (NME) at state (3,4).

All the outcomes shown above are derived from a complete-
information game. But, in real-life problems it is more likely that a
player only knows its own payoff and not that of the opponent. The
basic TOM methodology cannot be applied in this situation. We
will address this important and highly relevant problem by using a
learning approach.

4. LEARNING TOM PLAYERS

We consider the case where two players, without knowledge of
opponent payoffs, are playing according to the TOM framework.
The goal of our learning process is to infer opponent preferences
from repeated play of the game starting at randomly selected states.
By inducing minimally sufficient knowledge, the learning TOM
players should be able to converge to equilibrium from arbitrary
starting states.

To facilitate learning, we approximate conditional probability of
the opponent moving from a state given the starting state of play
and the player who is to make the first move. Conditional proba-
bility is essential here because opponent’s movement from a fixed
state may vary depending upon how far the game will continue.
We use uniform priors as starting points, i.e., all probabilities are
initialized to 0.5 in 2x2 games. The states of games have been con-
sidered in following order:

Cplayer
C1 C2
Rplayer r S0 S1
T2 53 5'2

The algorithm that we have used is described as follows:

Using Probability: A player calculates its probability of changing
the state by taking the product of conditional probability of
the states that will come next in the sequence of play, e.g.,

C R C R C
S0— S1— S2— S3— S0
Py pYe pYe

PY°, PY° and Py are the conditional probabilities of mov-
ing for player R at state S1, player C at state S2 and player
R at state S3 respectively given that the starting state was SO
and C was to make the first move (for brevity of presentation,
we will drop the superscript where the starting state and the
first player is specified). To make its move decision, player C
will look up P, and P, for player R from past frequencies of
moves and non-moves by player R from the respective states
given the starting state S0. And depending on P, player C
calculates its own conditional probability P;. In the follow-
ing we assume that for Vi, Q; = 1 — P; and U,(y) is the
payoff received by player x in state y.

Probability Calculation: The goal is to calculate the probability
of moving by C at state SO, Pc(.S0). But first, in the process
of backward induction, it has to calculate its probability of
moving at state S2, Pc(S2) (which is the same as Pi) as
follows:

Pc(S2) — 0

If Uc(SO) > Uc(S2) then Po(S2)+ = P». {C benefits if R
moves from S3 to SO, play results in cycle}

If Uc(S3) > Uc(S2) then Po(S2)+ = Q2.{C benefits if R
stays at S3, play stops at S3}

As TOM does not allow cycle, and Py x P; x P» is the
probability of creating a cycle, the probability of not chang-
ing should be at least this value. The process for calculating
Pc(S0) is then as follows:

Making the decision: After these probabilities are calculated, play
proceeds by every player throwing a biased coin with the cal-
culated probability to make a move from its current state. An



Po(S0) — 0

If (UC(S3) > UC(SO)) then Pc(SO)+ =Py x P; x QQ {C
benefits if play stops at S3.}

If (Uc(S2) > Uc(S0)) then P (S0)+ = Py x Q1. {C benefits
if play stops at S2.}

If (Uc(S1) > Uc(S0)) then Po(S0)+ = Qo. {C benefits if
play stops at S1.}

iteration stops when a player does not move or if a cycle
is created. Cycles can be created initially because of unin-
formed priors. Note that if C decides to move from SO, R
has to calculate Pr(S1) based on its estimates of P}, and
its decision to move or not at S3, which it can calculate in
a straightforward manner. Also, if R decides to move at S1,
then C can reuse its previous calculation of P; to choose its
move at S2.

Convergence to NMEs: Over time the backward induction pro-
cedure combined with the above decision mechanism, will
eliminate cycles. To see why this will happen, notice that, in
the above scenario, R’s decision at state S3 is deterministic.
i.e., itchanges if and only if Ur(S0)> Ugr(S3). Initially, C is
uncertain of this decision and assumes P is 0.5. Once it re-
peatedly observes R’s decision at state S3, C’s estimation of
P> will converge to 1 or 0. This, in turn will lead to P; con-
verging to 1 or 0 depending on the utilities C receive at states
S2, S3, and SO. The updates are reflected in the subsequent
plays by each player, which in turn, allows the other player to
get an accurate estimate of their relative preferences. Since
the learning is based on backward induction, accurate deter-
ministic choices are used to update less accurate estimates
and so on. Over time and repeated plays, the probabilities
will become small or large enough to produce almost deter-
ministic actions reflecting actual preferences. As a result, the
players will converge on NMEs.

Theorem: Learning TOM players converge to NME.
Proof: Without lack of generality we consider the case of
player C starting play from state SO (all other starting state,
player combinations can be handled in an analogous man-
ner). We can start our proof in one of two cases: i) when
an agent reaches a state with its maximum payoff, 4, and
ii) when an agent reaches to the state just one step behind
the terminal state (here, Ss). In all such cases, agent takes
its decision deterministically. Let’s study the case where S3
is reached. The deterministic decision by a player P while
considering move from state Si to Sy is defined as 65 =1,
if Uc(Si) > Uc(S;)); else 0. Also, the observed ratio of
the number of times a player P moving from state Si to the
number of times it made a decision in that state is designated
rl. Hence, Po(S:) = 6Grk, + 6% (1 — r§,). This value
will remain constant since at this state R’s behavior is deter-
ministic. Consequently, C’behavior is now deterministic and

r§2 will tend to 0 or 1. Likewise, we can also calculate
R R C R R C R C
Pp(S1) =0p1 75, rs,+031(l-rg,) rs, +631(1-rg,)
~~ ~—
=0orl —0orl

As the ¢ terms are 0 or 1 and the ratios converge to 0 or 1,
Pr(S1) will converge to a deterministic choice. Eventually,
then all the three probabilities, Pr(Ss), Pc(S2) and Pr(S1)
will have values of 0 or 1. As the probability calculations
follow the same backward induction used in TOM, when the
probabilities converge, the agent decisions will coincide with
the moves made by TOM players with complete information.

Hence, learning TOM players will converge to NMEs under
TOM play rules.

Now, we will illustrate the working of the above procedure using
the example in the Theory of Moves Framework Section (in the
following, we assume a player can only observe its own payoffs
even though we show both payoffs for helping the discussion):

Initial State, SO, R to move: (3,)".

The counter-clockwise progression from (3,.) back to (3,.) is
as follo}\évs:

R C R
(3,4) — (1,2) —» (2,3) — (4,1)— (3,4)
So S3 Sa S1 So
Py Py P

From our previous discussion we can calculate the probabil-
ity that R will move, Pr(3,.) = Py x P1 x Q2, and that of
its not moving tobe Py x P1 X Py + Py x Ql =4 Qo.

Following our procedure, R can calculate P, = P> + Q2 (as
payoff at SO and at S3 both are larger than that at S2) = 1.0.
Hence, Pr(3,.) is calculated to be 0.25 as initial estimates of
Py and P, are 0.5. Now, player R may move or not based
on the biased coin toss with this probability. If R does not
move, the starting state is the outcome of this iteration which
is also the outcome obtained if the TOM player had complete
information. But if the biased coin toss results in a move at
this state, the following scenario unfolds:

e C player will play from S3 and will look ahead two
moves. It assumes P;=0.5 and calculates P, to be 1.0
(based on its preference of (_,4) over (_,1)) and Pc(_,2)
=P, x P+ Q1 =0.54+0.5 = 1.0. As C will move
at this state, play will continue.

o R player will play from S2 and will look ahead 1 move.
Here, Pr(2,-) = P> + Q2 = 1.0. So, R will move and
play will continue.

e Cwill move from (_,1) to (_,4) by a deterministic choice.

This results in a cycle and stops the iteration. The cycle is a
violation of TOM rules. But this iteration allows R to update
P, to 1. If the same starting state and player is repeated,
Pr(3,-) = Po x P1 x Q2 becomes 0. As a result, player R will
not move from the starting state. Thus if (3,4) is chosen to be
the starting state, the outcome is consistent with complete-
information TOM play.

By analyzing the move of C from this state we can show that
it will not move from (_,4) and hence if the play starts at (3,4)
the outcome is an NME with learning TOMs.

Initial State, S1, C to move: (_1).

Let’s consider another situation. Suppose C moves first. The
clockwise progression from (_,1) back to (1) is as follows:
R C

C R C
4,1)— 3,4 — (1,2)— (2,3)— (41
S1 So S3 Sa S1
Py Py Py

e Player C will play from (,,1): Pc(,1) = Py x P1 X
where P, = @2 = 0.5. If the biased coin toss results
in no move, the outcome is not consistent with TOM
player under complete information. If C moves, play
continues as follows.

1We use an _ to signify unknown payoff of the opponent.



e Player R will play from state (3,.): Pr(3,-) = P1 X
P, = 0.5, where P, = 1.0 (chosen deterministically).
If R does not move output is consistent with complete-
information TOM play, but if R moves result will be
inconsistent and play continues as follows.

e Player C will play from state (_,2): Pc(-,2) = Q2 =0.5.
Now, if it does not move the output will be (1,2) which
is erroneous. Moreover, R will have an erroneous esti-
mate of P;. But if C moves, play continues as follows.

e Player R will play from (2,.) to (4,_). This will change
P, to 1, which results in a reduction of Pr(3,-). Over

time then R will not move from (3,4) resulting in an
outcome consistent with perfect-information TOM.

5. COMPARISON OF NMESWITHOTHER
EQUILIBRIUM CONCEPTS

As TOM proceeds sequentially, it is instructive to compare this
framework with the concept of dynamic games from classical game
theory. We start the discussion by reviewing a popular equilibrium

concept Nash equilibrium (NE) for simultaneous-move games, which

is defined as follows: A Nash equilibrium [12] is an outcome from
which neither player would unilaterally depart because it would do
worse, or at least not better, if it did. For example, (r1, ¢1) isa Nash
equilibrium in the following matrix with payoffs of 2 and 3 to the
row and column player respectively:

Matrix48 Cplayer
C1 C2

Rplayer rt o (2,3) (4,2
re  (1,1)  (3,4)

But NE is calculated on the basis of immediate payoff. It is in-
structive to evaluate the hypothesis whether it is beneficial for a
player to depart from an NE strategy when considering not just
immediate payoff but also those received from future moves and
countermoves. TOM adopts this line of reasoning and may achieve
different equilibrium states.

Dynamic games are the form of games studied in classical game
theory that has somewhat similar motivations to TOM. A dynamic
game consists of alternating moves by the players where the start-
ing player and the depth of the game tree is pre-determined. Along
with payoffs of players, dynamic games provide the sequence of
play. And as there is a sequence, all actions are not credible. The
equilibrium concept in dynamic games is that of subgame perfect
Nash equilibrium (SPNE), which can be calculated by backward
induction on the game tree. Game theory states that any dynamic
game can be represented by a corresponding simultaneous-move
game. Any SPNE in a dynamic game corresponds to a NE of the
corresponding simultaneous move game, but not vice versa.

The common aspect for calculating equilibria in TOM and dy-
namic game is the backward induction process. The figure 1 shows
the backward induction process used by TOM on matrix 48 consid-
ering (4,2) as starting state and R player as starting player. From
the figure we can see that R player will decide to stay at the current
state.

There are, however, fundamental differences between dynamic
games and TOM play. The first difference is in the representation
of the game trees. In contrast to TOM play where play commences
from a state in the game matrix, i.e., the players have already cho-
sen a strategy profile?, there is no concept of a physical state at the

2Brams argue that in real-life situations often the starting point or
the context of negotiation between negotiating parties already exist,

Figure 1: Backward Induction in TOM: R player wants to stay.

root of a game tree corresponding to a dynamic game. The starting
player in a dynamic game chooses from one of its possible strate-
gies. For each such strategy choice, the other player can respond
with one of its strategies and so on. Payoffs to the players at a leaf
of the game tree are based on the combination of strategies played
by the players from the root to the corresponding leaf. So, the state
information in dynamic games is captured by the path from root to
a leaf of the tree and not at each tree node.

To further illustrate the difference, consider the 2-by-2 payoff
matrix of the simultaneous-move equivalent of a dynamic-form game
where each player has only two strategies. For this one dynamic
game, there are eight different TOM game trees depending on which
of the two players make the first move and which of the four states
is chosen as the starting state. As a result there can be more equi-
libria, i.e., NME, for this matrix when using TOM than there are
SPNEs. Besides this, according to TOM rule, given a starting state,
if one player decides to move (based on backward induction on a
game tree where it is the starting player) and the other does not
(based on a game tree with the same initial state but where this
second player was the starting player), then the game proceeds ac-
cording to the first game tree. Hence TOM framework provides a
different set of equilibria, known as NMEs that may or may not
contain the NEs of the corresponding game matrix. Usually, the
number of NMEs are more than that of NEs because, here for cal-
culating NMEs each of the combination of starting state and start-
ing player has been considered. In case of matrix 48, there are two
NMEs: (4,2) and (3,4); none of them are NE. So, we can say that
TOM is alternative approach of standard game theory.

We emphasize, however, that these difference in the set of equi-
libria in TOM play and for dynamic games for the same payoff ma-
trix stems from TOM assuming a starting state from which players
moves, which is not the case with dynamic games. In particular,
TOM play does not violate any basic rationality premise. More
specifically, the backward induction used in TOM is functionally
identical to the backward induction process used in dynamic games
to calculate SPNEs. In this sense, the two equilibrium concepts are
identical.

6. EXPERIMENTAL RESULTS

and the negotiators argue over how to change the current context to
another, more desirable state.



We have run experiments with all 57 non-conflicting, structurally
distinct 2x2 games. For each game, we run several epochs, where
each epoch consists of play starting from each of the 4 states, and
each player getting the first move from a state. In one iteration, one
player gets the choice to make the first move starting from a given
state. Play continues until one player chooses not to move or if a
cycle is created. Probabilities are updated and actions are chosen as
per our procedure outlined in the Learning TOM players Section.
We plot how the terminal state has been achieved from a particular
state for a particular play. We observe that over the iterations the
correct terminal states from each of 4 states have been reached in
all 57 matrices. Hence, we can say that our learning TOM play-
ers accurately converge to the NMEs of the corresponding game
without prior knowledge of the opponent’s preferences or payoffs.

As an example, Figure 2 depicts the result of an experiment
with Matrix 13 having state 1 as starting state. In this figure and
the following, Rtom and Ctom (Rlearn and Clearn) corresponds
to states reached when the row and column TOM (learning TOM)
player moves first from the starting state. Here, the learning curve
of R player has quickly converged to the equilibrium state chosen
by TOM players with complete information, whereas the C player
took more time to reach that state. Figure 3 depicts the result on a
matrix corresponding to the well-known Prisoners’ Dilemma prob-
lem:

Prisoners’'Dilemma : Cplayer
C1 Cc2
Rplayer T1 (2,2) (4,1)

re  (1,4)  (3,3)

There are two NMEs in this matrix: SO and S2. In this figure, the
terminal state obtained from state 1 considering R and C player re-
spectively as the starting players, is the state S2. Although learning
TOM players choose non-terminal states S1 or SO in the first few
iterations, the desired state has been learned over time.

Similar results are observed on all four states of the remaining
matrices. So, we conclude that our learning approach results in
consistent convergence to NMEs in TOM play with limited infor-
mation.

7. CONCLUSIONS

In this paper, we have presented a learning approach to TOM
play in 2x2 games which does not require the knowledge of the
opponent’s preferences or payoffs. As TOM results in alternating
plays, moves taken by opponents can be used to approximate their
preferences, and this in turn can lead to a decision procedure, the
outcome of which is consistent with complete-information TOM
play. As it is unlikely for an agent to be able to observe the oppo-
nent’s payoffs in most real-life situations, our learning approach to
TOM play that does not require such payoff information provides
a valuable contribution to the literature on TOM. Combined with
the fact that the TOM framework has been used to model a wide
range of political, diplomatic, and historical conflicts, our learning
procedure provides an effective contribution to game playing with
alternating moves.

We have proved the convergence of the learning TOM players to
NMEs that result from TOM play with complete information. We
have also discussed the relationship of NME with the concept of
subgame perfect Nash equilibrium as discussed in classical game
theory literature for dynamic games.

We plan to scale this approach up to larger matrices. Intuitively
speaking, our learning framework is capable to deal with many
(more than two) players and multiple payoffs. In case of bimatrix
game, each player has to estimate one opponent’s move probabili-

matrix 13, starting state = state 1
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Figure 2: Outcome from state 1 by learning TOMs in Matrix
13. States reached considering R as starting player: State 1; C
as starting player: State 0

ties, whereas in a multi-player game, it has to store these probabil-
ities of all other players. The basic decision mechanism presented
here can be applied in multiplayer cases as well. We have to exper-
imentally evaluate the scale up properties for more agents.
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