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Abstract. The social sciences literature abound in problems of provid-
ing and maintaining a public good in a society composed of self-interested
individuals [6]. Public goods are social benefits that can be accessed by
individuals irrespective of their personal contributions. Such problems
are also addressed in the domain of agent based systems [15]. In this
paper we address the problem of the Tragedy of the Commons [9], a
particularly common social dilemma that leads to inefficient usage of
shared resources. We present a decision procedure following which ratio-
nal agents can optimally use a shared resource using only local informa-
tion. Our experimental results confirm that the tragedy of the commons
is successfully avoided and the shared resource is utilized to its capacity
when agents following our prescribed decision procedure.

1 Introduction

The viability of an individual in a society depends critically on the behavior of
other members. Interesting computational problems in agent societies include
paradoxes that involve reduction of system throughput when more resources are
added to an existing system. Other social dilemmas arise when myopic, local-
utility-maximizing decision-making by individual members of the society lead to
a loss of utility for everyone. Such problematic scenarios appear frequently in
natural and artificial societies.

In a society, the common infrastructures, goods and services are typically
shared between members. For example, if we consider the problem of city traffic,
we find that congestion problems arises out of self-interested drivers having to
share common resources like roads, bridges etc. It often happens that the shared
resource has a capacity and if the load is more than its capacity the resource
performance or its perceived utility to the users decrease sharply. In a society of
self-interested rational agents, or humans, each individual will try to maximize
their utility from the shared resources. From the local perspective of a given
agent, the more extensive use of a resource produces greater utility. If decision-
making is predicated only on this local perspective, each user in the system
can myopically try to maximize its load on the common resource. As a result,
the combined load is likely to exceed the capacity of the common resource and



adversely affect everyone and result in a decrease in everyone’s utility from the
resource. This is the well-known Social dilemma problem of the Tragedy of the
commons.

The examples of the Tragedy of the commons are now seen from the problem
of global warming, congestion of traffic to the problem of sharing communication
channel bandwidth.

An example of Tragedy of the commons lie in the example of network con-
gestion if every packet is sent with highest possible priority. Suppose there are
some routes of different quality. If everybody wants to route through the best
possible route then it leads to a congestion which worsen every routing through
that route.

More recently, attention has been drawn to the tragedy of the commons in
the context of autonomous agent systems [15]. These and other problems arise
in multiagent societies as multiple, distributed decision-makers try to maximize
local utility by taking decisions based only on limited global knowledge. Cor-
respondingly, multiagent system researchers have developed various approaches
to resolve resource conflicts between distributed agents. For example, some re-
searches have addressed the problem of effectively sharing common resources [2].
They proposed an agent as a planner who will make all resource allocation
decisions. But this central planning approach requires nearly perfect global
knowledge of all agents and the environment which is not very reasonable in
complex, distributed and dynamic domains. Durfee and Lesser proposed a dis-
tributed partial-global planning [3] approach for coherent coordination between
distributed problem solvers through the exchange of partial local plans. Ap-
proaches that emphasize economic mechanisms like contracting and auctions,
allocate resources based on perceived utility [12]. While the economic approaches
are interesting, we believe that they do not provide a satisfactory resolution to
social dilemma problems without an adequate discussion of varying individual
wealth and interpersonal utility comparisons. The COIN approach to solving
social dilemmas allows distributed computation but requires an “omniscient”
agent to set up the utility functions to be optimized locally [14].

Glance and Hogg [4] make the important observation that computational
social dilemmas can produce situations where it is impossible to arrive at glob-
ally optimal system configurations based only on distributed, rational decision-
making with local knwoledge. They contrast such computational problems with
traditional complexity analysis in algorithm theory where solutions are hard,
but not impossible to find.

The motivation of our work on computational social dilemma has been to in-
vestigate mechanisms to resolve conflicts while requiring minimal global knowl-
edge or imposing minimal behavioral restrictions on the agents. For example,
in [1] it is shown that a genetic algorithm based optimization framework can
solve a well-known social dilemma problem, the Braess’ Paradox [8]. The GA-
based function optimization approach is a centralized mechanism. Munde et. al.
used a more decentralized, adaptive systems approach using GAs, to address
both the Braess’ paradox and the Tragedy of the Commons [11]. Though de-



cision making is decentralized in this approach, the survival of individuals, as
determined by fitness-proportionate selection scheme, is a centralized procedure.
Though the latter procedure can be approximated in a decentralized manner,
a further criticism of the approach, the somewhat altruistic decision-procedure
used by the distributed agents, is difficult to address.

In this paper we concentrate on Tragedy of the commons problem with the
goal of designing defensible decentralized procedures relying on only minimal lo-
cal information that can still solve this dilemma. In the following we first review
the problem of social dilemmas and discuss the tragedy of the commons in more
detail. Then we present a local decision procedure for addressing the tragedy of
the commons. We assume that all agents in the system use our suggested de-
cision procedure. We then experimenatlly demonstrate that our suggested local
decision procedure produces optimal global utilization of the shared resource.

2 Social dilemmas

A social dilemma arises when agents have to decide between contributing or
not contributing towards a public good without the enforcement mechanism of a
central authority [5]. Individual agents have to tradeoff local and global interests
while choosing their actions. A selfish individual will prefer not to contribute
towards the public good, but utilize the benefits once the service is in place.
If a sufficient number of agents make the selfish choice, the public good may
not survive, and then everybody suffers. In general, social laws, taxes, etc. are
enforced to guarantee the preservation of necessary public goods. Consider a
scenario where a public good is to be initiated provided enough contribution is
received from the populace. Let us assume that the public good, G, costs C,
and the benefit received by individual members of the populace is B. Let us also
assume that in a society of N agents, P < N individuals decided to contribute to
the public good. Assuming that the cost is uniformly shared by the contributors,
each contributing agent incurs a personal cost of C

P . If enough agents contribute,
we can have C

P < B, that is even the contributors will benefit from the public
good. Since we do not preclude non-contributors from enjoying the public good
in this model, the non-contributors will benefit more than the contributors. If
we introduce a ceiling, M , on the cost that any individual can bear, then the
public good will not be offered if C

P > M . In this case, everybody is denied the
benefit from the public good.

Similarly in a resource sharing problem, where the cost of utilizing a resource
increases with the number of agents sharing it (for example, congestion on traffic
lanes). Assume that initially the agents are randomly assigned to one of two
identical resources. Now, if every agent opts for the resource with the least
current usage, the overall system cost (cost incurred per person) increases [7].
So, the dilemma for each agent is whether or not to make the greedy choice.



2.1 Tragedy of the Commons

In his book, The Wealth of Nations (1776), Adam Smith conjectured that an
individual for his own gain is prompted by an “invisible hand” to benefit the
group [13]. As a rebuttal to this theory, William Forster Lloyd presented the
tragedy of the commons scenario in 1833 [9]. Lloyd’s scenario consisted of a
pasture shared by a number of herdsmen for grazing cattles. This pasture has
a capacity, say C, i.e., each time a cattle added by a herdsman result in a gain
as long as the total number of cattles in the pasture, x, is less than or equal to
C. When x > C, each addition of a cattle result in a decrease in the quality of
grazing for all. Lloyd showed that when the utilization of the pasture gets close
to its capacity, overgrazing is guaranteed to doom the pastureland. For each
herdsman, the incentive is to add more cattles to his herd as he receives the full
proceeds from the sale of additional cattle, but shares the cost of overgrazing
with all herdsmen. Whereas the common resource could have been reasonably
shared by the herdsman exhibiting some restraint, greedy local choices made
by the herdsmen quickly leads to overgrazing and destruction of the pasture.
The question the herdsman will face is “What is the utility of adding one more
animal to my herd?” [6]. He observes that “Freedom in a commons brings ruin to
all.” and convincingly argues that enforced laws, and not appeals to conscience,
is necessary to avoid the tragedy of the commons.

Muhsam [10] has shown that if some or all other herdsmen add cattle when
x > C, an individual must add a head if he or she wishes to reduce the loss
suffered as a result. A rational, utility-maximizing agent will have no choice but
to add to the herd, and hence, to the overall deterioration of the resource perfor-
mance. This means that it is only possible to reach a co-operative equillibrium.

In our paper, we now define an abstract version of the Tragedy of the Com-
mons problem, to be used in the rest of the paper, as follows: a shared resource
can effectively support C units of load, but if the jointly applied load, x, exceeds
C, the quality of the service received from the resource deteriorates. We call C
the critical load of the resource. The above constraint is modeled by a utility per
unit load function as follows:

U(x) = K, when x ≤ C,

= K ∗ C

x
, otherwise, (1)

where K is a constant and U(x) denotes the utility per unit load when a total
of x units of load is applied on the system. It can be shown here that for any
rational, self interested, utility maximizing agents it is always a better option
to add more loads when the other agents are adding more load to the system.
And also it is clear that when every agent will go on adding load the utilization
of the system will be deteriorating as a result of decreased per unit utility. In
such a situation, intelligent agents will try to reach a co-operative equillibrium
to optimize the resource utilization. In this paper, we have presented such a
mechanism.



3 A Local Decision Procedure for the Tragedy of the
Commons Problem

In this section, we will provide an probabilistic distributed algorithm to solve
the problem of the Tragedy of the commons and also discuss the convergence of
the algorithm.

3.1 Algorithm

We assume the following. A[i], i = 1..N are the agents in the society. C is the
critical load of the shared resource, and x is the current combined load on the
shared resource. upperi and pu

i are private fields for agent i.

Step 1 Each agent apply a random load, l0i , on the shared resource. (We assume
that the initial combined load is less than the capacity of the shared resource,
i.e.,

∑
i l0i < C). Then the following steps are independently followed by each

agent.
Step 2 Each agent i increments its load, li, on the shared resource. Note that,

every time an agent increases (or decreases) its load implies increases (or
decreases) it’s load to the system by one unit.

Step 3 An agent i recieve its utility from the resource based both on the load
it applied and the total load on the resource(i.e. x). The resource derives
each agent’s per unit utility from the equation 1 and send it to each agent.
If the per unit utility received by this agent is not less than the best per unit
utility it has received in the past, go to Step 2.

Step 4 Agent i decrements its load and sets its increasing probability, pu
i = 1,

and upperi to false.
Step 5 If upperi is false, agent i increments its load by one on the shared

resource with probability pu
i . Otherwise, agent i maintains its previously

applied load.
Step 6 Agent i receives its updated utility based on current system load x and

load applied by this agent. If an agent had increased its load in Step 5 and
the new per unit utility is worse than the best per unit utility that agent
has ever received, it decrements its load by one and sets pu

i to half of it’s
previous value. Otherwise, an agent i who has increased its load in Step 5
sets upperi to true.

Step 7 If upperi is false and pu
i > pt (where pt is a small thresold probability)

go to Step 5.
Step 8 Agent i maintains its current load li. Repeat Step 8.

3.2 Convergence to equillibrium

The system reaches equilibrium when all agents reach Step 8 of the algorithm. At
this state, each agent feels that any increment/decrement of its load will reduce
its utility. Hence the load on the system do not change.



After an agent has passed through Step 3 it realizes that increasing its load
may decrease its per unit utility which in turn decreases the utility obtained
from the resource. So, every agent at Step 4 removes one load it added last
time. Observe that every agent will execute Step 4 in the same iteration. Here
we assume that in Step1 after all the agents add a random load, the total load
administered to the resource did not exceed the resource capacity, C1. So, after
Step 4 there may be three possibilites from the perspective of each autonomous
agent:

– It is the only agent who is using this resource and adding one more load will
decrease the per unit utility.

– More than one agent is using this resource, and the resource has reached it’s
critical load i.e. if any of the agents adds one more load everybody’s per unit
utility will be decreased.

– More than one agent is using this resource and some but not all of the agents
may add one more load without crossing the critical load.

A rational agent can reason after Step 4 that to prevent over-utilization of
the resource it should add one more load. For the first two possibilities above,
it should not increment load. But as it is not sure which of the possibilities cor-
respond to the current situation, it can use a probabilistic exploration scheme
outlined in Steps 5 through 7 to reach its optimum load. It starts with initial in-
crement probabilty of 1. At Step 5 it adds one load with its increment probabilty.
If the load increment produces increased per unit utility then it does not change
it’s load any more. Otherwise, if the addition of one more load reduces it’s per
unit utility, it halves it’s increment probability and tries later to add one more
load with this reduced increment probability. It keeps on probing in this manner
until it’s probability falls below a threshold. The motivation behind this halving
exploration process is similar to exponential backoff used for conflict resolution
in shared communication channels like a token ring. The realization is that there
must be other agents in the system who are trying to increase their loads as well,
and unless every agent back off a little from their eagerness to increase system
load, no one can benefit. Such exponentially decaying probabilities make it more
likely for the system to converge to an equilibrium.

In our algorithm, an agent uses only local feedback to determine the load it
applies on the system. Global information about individual loads used by other
agents is never used. Our claim is that when equilibrium is reached, the combined
load on the resource is exactly the critical load or capacity of the resource, i.e.,
the agents are using the resource optimally. They have reached this optimality
through a distributed decision procedure using only local knowledge and without
the directive of any central authority.

Now, we present some arguments for our decision procedure producing con-
vergence to the resource capacity, C. Suppose after Step 4 the load reaches L

1 If this assumption is violated a minor modification to the algorithm is required to
reduce the loads and bring the total load near C. Our implementation includes this
modification.



and the increment probability to 1. So, it is clear that L ≤ C < L + N has to
be satisfied, i.e., there must be some y for which L + y = C, where 0 ≤ y < N .
After Step 5 of the first iteration of the loop Step 5 through Step 7 the expected
number of load added to the system is N. So, the total load on the system ex-
ceeds critical load and every agent reaches to Step 5 with system load L and
increment probability 0.5. Now in the second iteration of the loop, the expected
load after Step 5 is L + bN

2 c. C may be greater than, equal to or less than this
load. In the first two possibilities the load on the resource is expected to increase
to L+bN

2 c and the number of agents who will be further willing to increase their
load by one is remaining N − bN

2 c with their increment probability set to 0.5
in the next iteration of the loop. When C < L + bN

2 c, all of the N agents will
withdraw their added load resulting in the load on the resource be still at L
and each agent’s increment probability reduced to 0.25 in the next iteration of
the loop. So, after each subsequent loop through Steps 5 through 7, the system
progresses towards convergence because either the number of agents willing to
increment their load is reduced to half compared to that of the last iteration
of the loop with the same individual increment probability, or the number of
agents willing to increment their load remains the same with the corresponding
increment probability reduced to half compared to that of the last iteration of
the loop.

So, after blog2 Nc + 1 iterations of the loop Step 5 through Step 7, the load
on the resource will be C and C−L agents will feel content with their maximum
possible load and N − C + L number of agents will be still trying to add one
more load with increment probability lies between 0.5 to 2− log2 N .

Now, we can say that after sufficient steps (with a loose upper bound of
d (− log2(pt))

2

2 e, where pt is the small thresold probability) of the loop Step 5
through Step 7 these N − C + L agents satisfy the criterion of equillibrium as
its increment probability will be less than a threshold. So, in any of the three
possibilities of perception, every agent will not change its current load. This is
also the optimal procedure for reaching the critical load of the resource as can
be inferred from the theory of binary search.

4 Experimental Section

We have experimented with different scenarios considering different number of
agents in the system and different critical loads. We now show results from some
of the experiments with 10 and 100 agents. Here we take the value of K as 1.
We set the critical load to different values with each agent following the decision
procedure outlined above. We have chosen resource capacities such that equal
distribution of load will not produce optimal resource utilization. These scenarios
provide more difficult challenges compared to the case whre system capacity can
be uniformly shared by the agents.

In Figure 1 (left), the load capacity is set to 62 and there are 10 agents
in the society. The figure shows how the autonomous agents reaches equilib-
rium with the total load applied equalling the resource capacity. In this figure
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Fig. 1. (left)Variation of total load and (right) variation in average per unit utility of
an agent: in the system with 10 agents and a load capacity of 62.
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Fig. 2. Variation of average per unit utility of an agent in a system with 10 agents and
a load capacity of 62 where the agents are not using local decision procedure and go
on adding load in each iteration

we have shown that after initial random allocation of the load to the resource,
agents steadily increment the load and then when the load exceeds the resource
capacity, agents decrease their loads to reach equilibrium. The convergence phe-
nomena is similar to the overshooting and undershooting typically observed in
control systems where the control variable overshoots and undershoots the de-
sired set point before settling. In Figure 1 (right), we present the variation of the
average per unit utility of an agent over the course of a run. We can observe that
initially there are a lot of deviations in the average per unit utility per agent
as the system overshoots the critical load. Finally, however, optimal capacity is
used at equilibrium and average per unit utility of an agent is reached to the
maximum(which is 1 here as the value K) .

In this framework of the experiment, in Figure 2 we show how the average
per unit utility of an agent goes down, if all agents go on adding load instead of
using this decision mechanism.
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Fig. 3. (Left) Variation of total load on a system with 10 agents and a load capacity of
68 and (Right) Variation of total load on a system with 100 agents and a load capacity
of 614.

In Figure 3 (Left), the critical load is changed to 68. This to ensure that
the algorithm works for all types of critical loads. Here we have shown what
happens after Step 4 of the algorithm. In the right figure of Figure 3, we use a
larger society of autonomous agents where the size of the society is 100. Here
the critical load is set to 614.

We have noted that the system reaches equilibrium with combined load equal
to resource’s critical capacity in all the scenarios we have experimented with. We
also verify this claim with running each experiment for 100 times and observe
no deviation from the convergence.

5 Conclusions

In this paper we have presented an algorithm to avoid the problem of Tragedy
of the commons in a society of rational agents based only on local feedback in
the form of utility received for the current load applied on a shared resource. We
have shown that our proposed procedure results in the shared resource is used
at its capacity load starting from arbitrary initial loads. As the tragedy of the
commons is an important, and common problem which can lead to inefficiencies
in the usage of shared resources, our procedure can have wide applicability.

Our procedure results in an equilibrium where some agents have higher util-
ity than others even when everyone starts with the same load. This is because
the equilibrium nature is static in the sense that no agent change their load
after reaching equillibrium. We plan to work towards a more “fair”, dynamic eu-
qilibrium where agents increase/decrease their load around so that the capacity
load is maintained while individuals with higher than average utility change over
time. We also plan to augment our procedure such that equilibrium is reached
in fewer iterations.



One of the drawback of this approach is that this considers only integral load.
It will be interesting to study how it can be improved to work with real-valued
loads.
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