
Strongly Typed Genetic Programmingin Evolving Cooperation StrategiesThomas Haynes, Roger Wainwright, Sandip Sen & Dale SchoenefeldDepartment of Mathematical & Computer SciencesThe University of Tulsae{mail: [haynes,rogerw,sandip,dschoen]@euler.mcs.utulsa.edu�AbstractA key concern in genetic programming (GP)is the size of the state{space which must besearched for large and complex problem do-mains. One method to reduce the state{spacesize is by using Strongly Typed Genetic Pro-gramming (STGP). We applied both GP andSTGP to construct cooperation strategies tobe used by multiple predator agents to pur-sue and capture a prey agent on a grid{world.This domain has been extensively studied inDistributed Arti�cial Intelligence (DAI) asan easy{to{describe but di�cult{to{solve co-operation problem. The evolved programsfrom our systems are competitive with manu-ally derived greedy algorithms. In particu-lar the STGP paradigm evolved strategies inwhich the predators were able to achieve theirgoal without explicitly sensing the location ofother predators or communicating with otherpredators. This is an improvement over pre-vious research in this area. The results ofour experiments indicate that STGP is ableto evolve programs that perform signi�cantlybetter than GP evolved programs. In addi-tion, the programs generated by STGP wereeasier to understand.1 IntroductionA problem with using Genetic Programming (GP)to solve large and complex problems is the con-siderable size of the state{space to be searched forgenerating good solutions. Even for small ter-minal and function sets and tree depths, search�This is a preprint of the paper in the Proceedings ofthe Sixth International Conference on Genetic Algorithms,1995.

spaces of the order of 1030 � 1040 are not uncom-mon [Montana 1994]. To address this pressing prob-lem, researchers have been investigating various meansto reduce the GP state{space size for complex prob-lems. Notable work in this area include Auto-matically De�ned Functions (ADF) [Kinnear 1994b,Koza 1994], module acquisition (MA) [Angeline 1994,Kinnear 1994b], and Strongly Typed Genetic Pro-gramming (STGP) [Montana 1994]. The �rst twomethods utilize function decomposition to reduce thestate{space. The STGP method utilizes structuring ofthe GP S-expression to reduce the state{space.We strongly agree with Montana's claim of the relat-ive advantage of STGP over GP for complex prob-lems [Montana 1994]. Besides the bene�t of reducingthe state{space, we are interested in whether the struc-ture imposed by strong typing will be useful for ana-lyzing the output of the evolved program. A com-mon problem in AI research is deciphering the com-plex rules derived by the learning system. We believethat solutions produced by STGPs are in general morecomprehensible than solutions produced by GPs.In this paper, we further investigate the relative mer-its of STGP over GP by applying these methods ona di�cult agent coordination problem. To our know-ledge, this is the �rst application of the GP paradigmto the �eld of Distributed Arti�cial Intelligence (DAI).Our goal is to generate programs for the cooperation ofautonomous agents in a simulated environment. Theidenti�cation, design, and implementation of strategiesfor cooperation is a central research issue in the �eld ofDAI. Researchers are especially interested in domainswhere multiple, autonomous agents share goals andresources, and use mutually acceptable work{sharingstrategies to accomplish common goals. Developingcooperation strategies to share the work load is an ex-tremely di�cult problem, especially when the envir-onment in which the agents are working is uncertainor not completely understood. Current techniques in1

developing cooperation strategies are mostly done o�{line using extensive domain knowledge to design fromscratch the most appropriate cooperation strategy. Itis nearly impossible to identify or even prove the exist-ence of the best cooperation strategy. In most cases acooperation strategy is chosen if it is reasonably good.In [Haynes 1994], we presented a new approach to de-veloping cooperation strategies for multi{agent prob-lem solving situations. Our approach di�ers frommostof the existing techniques for constructing cooperationstrategies in two ways:� Strategies for cooperation are incrementally con-structed by repeatedly solving problems in the do-main, i.e., they are constructed on{line.� We rely on an automated method of strategy for-mulation and modi�cation, that depends very littleon domain details and human expertise, and moreon problem solving performance on randomly gen-erated problems in the domain.The approach proposed in [Haynes 1994] for devel-oping cooperation strategies for multi{agent problemsis completely domain independent, and uses the GPstrategy. To use the GP approach for evolving co-operation strategies, it is necessary to �nd an encod-ing of strategies depicted as S{expressions and choosean evaluation criterion for a strategy corresponding toan arbitrary S{expression. Populations of these struc-tures are evaluated by a domain{speci�c evaluationcriterion to develop, through repeated problem solv-ing, increasingly e�cient cooperation strategies. Themapping of various strategies to S{expressions and viceversa can be accomplished by a set of functions and ter-minals representing the fundamental actions in the do-main of the application. Evaluations of the structurescan be accomplished by allowing the agents to executethe particular strategies in the application domain. Wecan then measure their e�ciency and e�ectiveness bysome criteria relevant to the domain.We have used the predator{prey pursuit game to testour hypothesis that useful cooperation strategies canbe evolved using the STGP paradigm for non{trivialproblems. This domain involves multiple predatoragents trying to capture a prey agent by surround-ing it. The predator{prey problem has been widelyused to test new coordination schemes [Gasser 1989,Stephens 1989, Stephens 1990, Korf 1992]. The prob-lem is easy to describe, but extremely di�cult to solve;the performance of even the best manually generatedcoordination strategies is less than satisfactory. Wewill show that STGP evolved coordination strategies

perform competitively with the best available manuallygenerated strategies. Our experiments demonstrate therelative advantage of using STGP over GP.2 Strongly Typed GeneticProgrammingGenetic programming (GP) is a powerful technique forautomatically generating computer programs to per-form a wide variety of tasks [Koza 1992]. The GPuses the traditional genetic algorithm (GA) operatorsfor selection and recombination of individuals from onepopulation of structures to form another population.The representation language used in GPs are computerprograms represented as Lisp S{expressions in a parsetree. Recently GP has attracted a tremendous numberof researchers because of the wide range of applicabilityof this paradigm, and the easily interpretable form ofthe solutions [Kinnear 1994a, Koza 1992, Koza 1994].We assume the reader is familiarwith the fundamentalsof GAs and GPs.In GP the user must specify all of the functions, vari-ables and constants that can be used as nodes in aparse tree. Functions, variables and constants whichrequire no arguments become the leaves of the parsetrees and are called terminals. Functions which re-quire arguments form the branches of the parse trees,and are called non{terminals. The set of all termin-als is called the terminal set, and the set of all non{terminals is called the non{terminal set. Note the termnon{terminal is what Koza [Koza 1992] calls a func-tion.One serious constraint on the user{de�ned terminalsand non{terminals is called closure. Closure meansthat all of the non{terminals must accept argumentsof a single data type (i.e. a
oat) and return val-ues of the same data type. This means that all non{terminals return values that can be used as argu-ments for any other non{terminal. Hence, closuremeans any element can be a child node in a parsetree for any other element without having con
ictingdata types. Montana [Montana 1994] claims that clos-ure is a serious limitation to genetic programming.Koza [Koza 1992] describes a way to relax the clos-ure constraint using the concept of constrained syntaxstructures. Koza used tree generation routines whichonly generated legal trees. He also used operations onthe parse trees which maintain legal syntactic struc-tures. This is one of the fundamental concepts ofSTGP.In STGP, variables, constants, arguments, and re-turned values can be of any type. The only restriction2

is that the data type for each element be speci�ed be-forehand. This causes the initialization process and thevarious genetic operations to only construct syntactic-ally correct trees. One of the key concepts for STGPare generic functions, which is a mechanism for de�ninga class of functions, and de�ning generic data types forthese functions. Generic functions eliminate the needto specify multiple functions which perform the sameoperation on di�erent types. For example, one canspecify a single generic function, VECTOR{ADD, thatcan handle vectors of di�erent dimensions, instead ofmultiple functions to accommodate vectors for each di-mension. Specifying a set of arguments types, and theresulting return type, for a generic function is calledinstantiating the generic function.The STGP search space is the set of all legal parsetrees. That is, all of the functions have the correctnumber of parameters of the correct type. Generallythe parse tree is limited to some maximumdepth. Themaximum depth limit on a parse tree is one of theGP parameters. This keeps the search space �nite andmanageable. It also prevents trees from growing to anextremely large size.Montana [Montana 1994] presented several di�erentexamples illustrating these concepts. He used STGPin solving a wide variety of moderately complex prob-lems involving multiple data types. He showed in hisexamples that STGP was very e�ective in obtainingsolutions to his problems compared to GP. Montanalists three advantages of STGP and generic functions:1. Generic data types eliminate operations which arelegal for some sets of data used to evaluate per-formance, but which are illegal for other possiblesets of data.2. When generic data types are used, the functionsthat are learned during the genetic programmingprocess are generic functions.3. STGP eliminates certain combinations of opera-tions. Hence it necessarily reduces the size of thesearch space. In many cases the reduction is asigni�cant factor.In one of Montana's examples [Montana 1994], hepresents a problem with a terminal set of size two, anda non{terminal set of size 10. When the maximum treedepth was restricted to �ve, the size of the search spacefor the STGP implementation was 105, while the sizeof the GP search space was 1019. In the same examplewhen the maximum tree depth was increased to six,the size of the search space for the STGP implement-

ation was 1011, while the size of the GP search spacewas 1038.3 The Pursuit ProblemThe original version of the predator{prey pursuit prob-lem was introduced by Benda, et al. [Benda 1985] andconsisted of four blue (predator) agents trying to cap-ture a red (prey) agent by surrounding it from fourdirections on a grid{world. This problem is a com-mon domain used in Distributed Arti�cial Intelligenceresearch to evaluate techniques for developing cooper-ation strategies. In the original version of the problem,agent movements were limited to one either horizontalor vertical step per time unit. The movement of theprey agent was random. No two agents (prey or pred-ator) were allowed to occupy the same location. Thegoal of this problem was to show the e�ectiveness ofnine organizational structures, with varying degrees ofagent cooperation and control, on the e�ciency withwhich the predator agents could capture the prey.Gasser et al. [Gasser 1989] approached this problem byallowing the predators to occupy and maintain what iscalled a Lieb con�guration while homing in on the prey.In a Lieb con�guration each predator occupies a di�er-ent quadrant, where a quadrant is de�ned by diagonalsintersecting at the current location of the prey. Thisstudy did not provide any experimental results. Hencetheir research is di�cult to compare with other workon this problem.Korf [Korf 1992] claims in his research that a discret-ization of the continuous world that allows only hori-zontal and vertical movements is a poor approximation.He calls this the orthogonal game. Korf developed sev-eral greedy solutions to problems where eight predat-ors are allowed to move orthogonally and diagonally.He calls this the diagonal game. He also developedsolutions for a game in which six predators move ona hexagonal grid rather than a rectangular grid. Hecalls this the hexagonal game. In Korf's solutions, eachagent chooses a step that brings it nearest to the pred-ator. A max norm distance metric (maximum of xand y distance between two locations) is used to solveall three types of games. The prey was captured ineach of one thousand random con�gurations in thesegames. It should be noted that these games did nothave a time limit, and once a prey was captured, itcould not escape the predators.Korf concludes that the max norm distance metric issuitable for the diagonal and the hexagonal game, butis ine�ective for the orthogonal game. To improve thee�ciency of capture (i.e., the steps taken for a capture),3

he adds a term to the evaluation of moves that requirespredators to move away from each other before conver-ging on the prey. Hence, the predators will encircle theprey and thus eliminate any escape routes. This meas-ure is successful in the diagonal and hexagonal games,but makes the orthogonal game unsolvable. Korf re-places the traditional randomly moving prey with aprey that chooses a move that places it at the max-imum distance from the nearest predator. Any tiesare broken randomly. He claims this addition to theprey movements makes the problem considerably moredi�cult. It is our conjecture that the real di�culty isbecause in his experiments the predators and prey taketurns moving. In all of our experiments the prey andpredator agents move simultaneously.4 Cooperation strategiesIn our experiments, the initial con�guration consistedof the prey in the center of the grid and the predatorsplaced in randomnon{overlapping positions. The solu-tions we obtained are used to solve problems of othersizes, speci�cally grids of size 30 by 30, 40 by 40 and50 by 50. Representative results are presented. Allagents choose their action simultaneously. The envir-onment is accordingly updated and the agents choosetheir next action based on the new state. Con
ict res-olution will be necessary since we do not allow twoagents to co{occupy a position. If two agents try tomove into the same location simultaneously, they are\bumped back" to their prior positions. One pred-ator, however, can push another predator (but not theprey) if the latter did not move. The prey moves awayfrom the nearest predator. However, 10% of the timethe prey does not move. This e�ectively makes thepredators travel faster than the prey. The grid is tor-oidal in nature, and the orthogonal form of the game isused. A predator can see the prey, but not other pred-ators. Furthermore the predators do not possess anyexplicit communication skills, i.e. the predators cannotcommunicate to resolve con
icts or negotiate a capturestrategy. We performed each of our experiments usingboth GP and STGP.The STGP and GP algorithms are used to evolve aprogram to be used by a predator to choose its moves.The same program is used by all the predators. Thus,each program in the population represents a strategyfor implicit cooperation to capture the prey. Furtherdiscussion of the evolution of these programs and com-parisons of STGP versus GP is presented in Section 5.

4.1 Encoding of Cooperation StrategiesThe terminal and function sets for our STGP imple-mentation of the pursuit problem are shown in Table 1.In our domain, the root node of all parse trees is en-forced to be of type Tack, which returns the numbercorresponding to one of the �ve choices the prey andpredators can make: (North, East, West, South andHere). Notice the required types for each of the ter-minals, and the required arguments and return typesfor each function in the function set. Clearly, this is aSTGP implementation for the pursuit problem.4.2 Evaluation of Cooperation StrategiesTo evolve cooperation strategies using GPs it is neces-sary to rate the e�ectiveness of cooperation strategiesrepresented as programs or S{expressions. We evalu-ated each strategy by giving it k randomly generatedpredator placements. For each scenario, the strategy(program) was run for 100 time steps. This results inone simulation. A time step is de�ned as a move madeby each of the agents simultaneously. The percentageof capture was used as a measure of �tness when com-paring several strategies over the same scenario. Sincethe initial population of strategies are randomly gener-ated, we expected that very few strategies would resultin a capture after only 100 moves. Hence, we used ad-ditional terms in the �tness function to di�erentiallyevaluate the non{capture strategies. We designed ourevaluation function for a given strategy to contain thefollowing terms:� After each move is made according to thestrategy, the �tness of the program representingthe strategy is incremented by (Grid width) /(Distance of predator from prey), for each pred-ator. Higher �tness values result from strategiesthat bring the predators closer to the prey, andkeep them near the prey. This term favors pro-grams producing a capture in the least number ofmoves.� When a simulation ends, for each predator oc-cupying a location adjacent to the prey, a num-ber equal to (# of moves allowed � grid width) isadded to the �tness of the program. This term isused to favor situations where one or more pred-ators surround the prey.� If a simulation ends in a capture position, anadditional reward of (4 � # of moves allowed �grid width) is added to the �tness of the program.This term strongly biases the evolutionary search4

Terminal Type Purpose Function Return Arguments Purpose/ReturnB Boolean TRUE CellOf Cell Agent A Get the cell coordor FALSE. and Tack B of A in B.Bi Agent The current IfThenElse Type of B Boolean A, If A, then do B, elsepredator. and C Generic B do C. (B and C mustand C have the same type.)Prey Agent The prey. < Boolean Length A If A < B, thenand Length B TRUE else FALSE.T Tack Random Tack in MD Length Cell A Return the Manhattanthe range of Here and Cell B distance betweento North to West. A and B.Table 1: Terminal and Function Setstoward programs that enable predators to main-tain their positions when they capture the prey.In our experiments, the distance between agents ismeasured by the Manhattan distance (sum of x andy o�sets) between their locations.In order to generate general solutions, (i.e., solutionsthat are not dependent on initial predator{prey con-�guration), the same k training cases were run foreach member of the population per generation. The�tness measure becomes an average of the trainingcases. Note these training cases can be either the samethroughout all generations or randomly generated foreach generation.5 Experimental ResultsThe STGP system, called GPengine, used in this re-search is an extension of the package developed in[Haynes 1995] and is written in C. Furthermore, it canbe used as either a STGP or GP system depending ona runtime switch. A graphical reporting system wascreated for X{Windows using the Tcl and Tk toolkitwith the Blt extension; this system was a modi�cationof the work by Martin [Martin 1994].The basic setup for the simulations is described in Sec-tion 3. Programs were evolved for grid sizes rangingfrom 10 by 10 to 50 by 50, with the prey either movingrandomly (Random) or moving away from the nearestpredator (MAFNP). In each generation k test caseswere randomly generated, and each program was eval-uated on each of the test cases. All �tness data presen-ted is an average over the k test cases. Note that the�tness function is di�erent per generation.5.1 Untyped GPOur results for the GP experiments is exempli�ed bythe curve shown in Figure 1(a). Notice that there is no

IFTE(<(CellOf(Bi,<(CellOf(W, Bi),CellOf(Bi, Prey))),CellOf(Prey, W)),IFTE(<(CellOf(Bi, Prey),CellOf(Prey, T)),IFTE(IFTE(CellOf(Prey, T),S,MD(Prey, F)),S,CellOf(Prey,CellOf(Prey, T))),W),N)Program 1: The best program generated by GP.steady increase of �tness that indicates that learningis occurring.The only good GP program resulted from a 20 by 20grid with a randomly moving prey. The results for theexperiment which produced the program is shown inFigure 1(b). The curve follows the pattern for good�tness curves which is indicative of learning. A goodcurve, in general, �rst exhibits a steady build up, thena sharp jump as a good building block is discovered,and �nally reaches a plateau, which indicates the dis-covery of a local minimum/maximum. This process isrepeated until either the global minimum/maximum isfound or the GP terminates.Note that the number of generations has been extendedto 2000 in Figure 1(b) compared to 500 in Figure 1(a).This extension was prompted by promising results inthe early generations. Generation 1389 had the bestprogram (see Program 1) which contains 39 nodes andhas a �tness of 29850 out of a maximum possible �t-ness of 32000.5

2000

2500

3000

3500

4000

4500

5000

5500

0 50 100 150 200 250 300 350 400 450 500

B
e
s
t

F
i
t
n
e
s
s

Generation

(a)

0

5000

10000

15000

20000

25000

30000

0 200 400 600 800 1000 1200 1400 1600 1800 2000
B
e
s
t

F
i
t
n
e
s
s

Generation

(b)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 100 200 300 400 500 600

B
e

s
t

F
it
n

e
s
s

Generation

(c)Figure 1: Example �tness curves for randomly moving prey systems: (a) Typical untyped (GP), (b) Best untyped(GP), and (c) Best typed (STGP).5.2 Typed GPA typical result for a STGP run using a 30 by 30 gridwith a randomly moving prey is shown in Figure 1(c).This �tness curve indicates that good building blocksare being identi�ed. This �tness curve learns fasterthan the GP results shown in Figure 1(b). Indeed all ofour results for the STGP runs exhibited this propertyof learning.As expected, the initial randomly generated programswere extremely poor strategies. The STGP, however,was successful in evolving e�ective strategies over therun as evidenced by the improvement in average andmaximum �tness of structures in successive popula-tions (see Figure 1(c)). Fluctuations in the �tnessoccur over the entire run because the random initialcon�gurations change between successive generations.Generation 412 had the best program (see Program 2)which contains 61 nodes and has a �tness of 46660 outof a maximum possible �tness of 48000.5.3 AnalysisThe moves suggested by the STGP program (strategy)for various relative positions of a predator with re-spect to the prey are graphically represented in Fig-ure 2(a). Figure 2(b) shows the strategy for a de-terministic Korf's max norm, a modi�cation of the al-gorithm presented in [Korf 1992]. It is interesting tonote how the agents converge on the prey using thepolicy. More signi�cantly, the STGP solution is stable,in that once the prey is captured, no predator makes amove that allows the prey to escape. The STGP pro-duces a very plausible strategy using very little domain

IFTE(<(IFTE(T,MD(CellOf(Prey, H),CellOf(Bi,E)),MD(CellOf(Prey, N),CellOf(Bi, H))),MD(CellOf(Prey, N), CellOf(Bi, W))),IFTE(<(MD(CellOf(Bi, N),CellOf(Prey, H)),MD(CellOf(Bi, N),CellOf(Prey, N))),N,E),IFTE(<(MD(CellOf(Prey, N),CellOf(Bi, N)),MD(CellOf(Bi, E),CellOf(Prey, N))),W,S))Program 2: The best program generated by STGP.information. Furthermore, this approach does not relyon any communication between agents. Predators areonly assumed to be cognizant of the location of theprey and not the location of the other predators.The moves suggested by the GP program are notshown due to the di�culty in the interpretation theprogram. The moves of the STGP program are onlydependent on the relative relationship between a pred-ator and the prey. The moves of the GP program aredependent on the actual relationship between both apredator and the prey and the fourth predator and theprey. In our description of the predator{prey domain,we stated that predators could not see each other. Theclosure property allowed the GP system to violate thisrule. Also the STGP program's moves are independ-ent of which particular predator is executing the pro-gram, while the GP program's moves are dependent on6

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P

(b)Figure 2: Example pursuit paths found by (a) STGP and (b) max norm.a predator.1The best GP program could be due to the randomcon�guration of the predators rather than the result ofa good program. Notice the three jumps in �tness inthe generation range of 1200 to 1400 in Figure 1(b).The best STGP program is due to a good program, asevidenced by consistent scoring in Figure 1(c).The best GP and STGP programs generated weretested against data from Stephens [Stephens 1989] and1000 random test cases of our own. The averagedresults are shown in Table 2. Four human derivedalgorithms, discussed in detail in [Haynes 1994], arealso shown in Table 2: Korf's max norm (MN),Korf's Manhattan distance (MD), Korf's original maxnorm (MNO), and Korf's originalManhattan distance(MDO). The max norm algorithms determine the bestmove to make based on the diagonal distance betweena predator and the prey. The Manhattan distance al-gorithms determine the best move to make based onthe sum of the di�erences of the x and y coordinates ofa predator and the prey. The predators in the originalalgorithms take turns moving, and thus have no con-
ict for cells. The predators in the modi�ed algorithmsall follow the rules outlined in Section 3.Two lines of data are shown for both GP and MNO inTable 2. The �rst line represents the number of cap-tures that hold to the end of a simulation. The secondline represents shadow captures, which are situationsin which the predators capture a prey, but allow it toescape. Results show that the GP program is weakerthan the other algorithms in that it did not learn to1We have performed further experiments in which theSTGP predators are allowed to interact with each other.Over time, this capability was bred out of the best of gen-eration program.

keep the prey captured in all cases.The relevant results extracted from Table 2 are:� The STGP program signi�cantly outperforms theGP program in all cases.� While one manually derived algorithm, MD, con-sistently outperforms the STGP program, theSTGP program was able to outperform all of theother greedy algorithms.� The GP program did outperform some of thegreedy algorithms.� The GP program did not generalize outside of thedomain that created it. This program was gener-ated from a system that had a prey which movedrandomly and also at the same time as the predat-ors. The only signi�cant capture rates for the GPprogram occur in this scenario.There are two points that stand out when comparingGP versus STGP programs:1. A good GP program takes longer to generate thana good STGP program.2. The best STGP program had a higher capture ratethan the best GP program.Table 3 shows the state{space size for the traditionalGP (untyped) implementation, and the STGP (typed)implementation of the pursuit problem. Notice for vari-ous maximum tree depth restrictions that the STGPhas a signi�cantly smaller state{space size. We believethis is probably the single most important reason forthe observed performance di�erence.7

Stephen's 30 test cases 1000 random test casesMAFNP Prey Random Prey MAFNP Prey Random PreyPrey �rst Synch. Prey �rst Synch. Prey �rst Synch. Prey �rst Synch.GP 0.00(0.00) 0.00(0.00) 0.00(0.00) 1.85(1.05) 0.00(0.00) 7.00(1.06) 2.80(1.48) 9.28(13.03)0.00(0.00) 0.00(0.00) 0.00(0.00) 1.85(1.05) 0.00(0.00) 7.00(1.06) 2.80(1.48) 9.31(13.30)STGP 3.04(1.56) 5.04(2.11) 3.69(1.65) 9.50(2.25) 100.00(9.61) 216.00(8.12) 111.40(8.51) 340.20(14.69)MN 0.69(0.62) 1.46(1.24) 1.92(1.16) 10.31(3.13) 28.70(5.36) 56.50(6.84) 68.00(8.11) 374.40(11.97)MD 8.50(2.59) 5.31(2.41) 5.35(1.83) 13.35(2.37) 337.30(13.58) 222.90(12.33) 193.10(11.81) 463.40(19.727)MNO 0.00(0.00) 0.00(0.00) 0.08(0.27) 0.08(0.27) 0.10(0.32) 0.10(0.32) 1.80(0.92) 2.60(0.97)0.39(0.64) 0.58(0.70) 7.19(2.37) 7.23(2.37) 14.90(4.31) 15.00(5.29) 273.20(16.79) 270.80(17.76)MDO 2.35(1.33) 2.27(1.59) 1.15(1.01) 1.04(1.15) 96.00(11.16) 96.70(11.89) 56.7(8.86) 57.30(7.73)Table 2: Average number of captures over di�erent runs (standard deviations are presented in parentheses).Maximum Traditional GP STGPLevel (untyped) (Typed)0 9 51 972 502 9.5 x 108 302503 8.5 x 1026 9.3 x 10114 6.1 x 1080 8.9 x 10325 2.3 x 10242 8.6 x 1092Table 3: State{Space Sizes for Various Con�gurationsfor the Pursuit ProblemIn addition to reducing the state{space size, the STGPimplementation generates programs which are easierfor humans to understand. Our experimental setupexplicitly excluded predators from sensing each otherspositions. The GP system found a loophole in thatclosure allowed the CellOf function to examine otherpredators. This occurred in Program 1 where eachpredator examined the relationship between itself andpredator 4. This loophole complicates the process fordetermining the rules employed for movement.6 ConclusionsWe used Genetic Programming to evolve cooperationstrategies for predators to capture a prey moving in agrid{world. Results from both the 30 test cases used ina previous study [Stephens 1989], and on an additional1000 randomly generated test cases show that the solu-tion evolved by the STGP implementation is very com-petitive with manually derived algorithms, and losesonly to the MD algorithm. Furthermore, though theGP solution is signi�cantly inferior to the STGP solu-tion, it will occasionally fare better than the manuallyderived algorithms. The capture rates of all algorithmsare still low, which indicates there is still a lot of workto be done in this domain.We have shown that the STGP paradigm can be e�ect-ively used to generate complex cooperation strategieswithout being provided any deep domain knowledge.

The evolved strategies fared extremely well comparedto some of the best manually constructed strategies.We believe this approach to developing coordinationschemes holds further promise for domains in which ahuman designer has much less understanding of whata good coordination strategy should be.7 Future WorkHave we packaged too much into the MD function? Inconstructing a GP system there are two e�orts whichare the most time consuming: deriving the function andterminal sets and constructing the �tness evaluationfunction. A concern in constructing the function setis how much functionality should be made available tothe system? If there is not enough functionality, thena solution can not be found, and if there is too muchfunctionality, then a solution is trivial.In the STGP system the solution appears to be trivial,while in the GP system the solution is hard to �nd. Ifwe replace the MD function with its constituent parts,will the STGP system be able to still �nd valid solu-tions and will it still fare better than the GP system?Is the advantage of the STGP system due solely to thereduction of the state{space? If we were to increasethe state{space of the STGP system to be equal or lar-ger than the GP system then would the STGP systemstill perform better than the GP system? Simple cal-culations show that if we allow the STGP programs togrow two more depth levels, then its state{space willbe signi�cantly larger than the GP system.In this paper we have utilized the signi�cantly smallersearch space for the STGP system over the GP system.We believe that this huge reduction in the search spaceallows the STGP system to evolve considerably bettersolutions. An important question to answer is whetherthe severely constrained search space for the STGPprevents it from generating optimal or near-optimalsolutions in certain problems. This can happen if thereduced search space does not contain the optimal solu-tion, or it eliminates portions of the search space that8

contain good building blocks required to construct anoptimal or near-optimal solution.We believe the above scenario does not arise in theproblems discussed in the current paper. It is also notimmediately obvious if such a scenario can occur inany problem domain. We would like to investigate thisproblem further. Our goal is to construct an arti�cialproblem to show that a STGP system generated froma given GP system for that problem has a search spacethat does not contain the optimal solution.AcknowledgmentsThis research was partially supported by OCASTGrant AR2-004 and Sun Microsystems, Inc.References[Angeline 1994] Peter J. Angeline. Genetic programmingand emergent intelligence. In Kenneth E. Kinnear,Jr., editor, Advances in Genetic Programming, pages75{97. MIT Press, Cambridge, MA, 1994.[Benda 1985] M. Benda, V. Jagannathan, and R. Dodhi-awalla. On optimal cooperation of knowledge sources.Technical Report BCS-G2010-28, Boeing AI Center,Boeing Computer Services, Bellevue, WA, August1985.[Gasser 1989] Les Gasser, Nicolas Rouquette, Randall W.Hill, and John Lieb. Representing and using organ-izational knowledge in DAI systems. In Les Gasserand Michael N. Huhns, editors, Distributed Arti�cialIntelligence, volume 2 of Research Notes in Arti�cialIntelligence, pages 55{78. Pitman, 1989.[Haynes 1994] Thomas Haynes, Roger Wainwright, andSandip Sen. Evolving cooperation strategies. Tech-nical Report No. UTULSA-MCS-94-10, The Uni-versity of Tulsa, December 16, 1994.[Haynes 1995] Thomas D. Haynes and Roger L. Wain-wright. A simulation of adaptive agents in a hostileenvironment. In Proceedings of the 1995 ACM Sym-posium on Applied Computing, pages 318{323. ACMPress, 1995.[Kinnear 1994a] Kenneth E. Kinnear, Jr., editor. Advancesin Genetic Programming. MIT Press, Cambridge,MA, 1994.[Kinnear 1994b] Kenneth E. Kinnear, Jr. Alternatives inautomatic function de�nition: A comparision of per-formance. In Kenneth E. Kinnear, Jr., editor, Ad-vances in Genetic Programming, pages 119{141. MITPress, Cambridge, MA, 1994.[Korf 1992] Richard E. Korf. A simple solution to pursuitgames. In Working Papers of the 11th InternationalWorkshop on Distributed Arti�cial Intelligence, pages183{194, February 1992.

[Koza 1992] John R. Koza. Genetic Programming, On theProgramming of Computers by Means of Natural Se-lection. MIT Press, 1992.[Koza 1994] John R. Koza. Genetic Programming II,Automatic Discovery of Reusable Programs. MITPress, 1994.[Martin 1994] Martin C. Martin. graphs.blt. GP FTPArchives, 1994.[Montana 1994] David J. Montana. Strongly typed geneticprogramming. Technical Report 7866, Bolt Beranekand Newman, Inc., March 25, 1994.[Stephens 1989] Larry M. Stephens and Matthias B. Merx.Agent organization as an e�ector of dai system per-formance. In Working Papers of the 9th Interna-tional Workshop on Distributed Arti�cial Intelligence,September 1989.[Stephens 1990] Larry M. Stephens and Matthias B. Merx.The e�ect of agent control strategy on the performanceof a DAI pursuit problem. In Proceedings of the 1990Distributed AI Workshop, October 1990.

9

