Strongly Typed Genetic Programming
in Evolving Cooperation Strategies

Thomas Haynes, Roger Wainwright, Sandip Sen & Dale Schoenefeld
Department of Mathematical & Computer Sciences
The University of Tulsa
e—mail: [haynes rogerw,sandip,dschoen]@euler.mcs.utulsa.edu*

Abstract

A key concern in genetic programming (GP)
is the size of the state—space which must be
searched for large and complex problem do-
mains. One method to reduce the state—space
size 1s by using Strongly Typed Genetic Pro-
gramming (STGP). We applied both GP and
STGP to construct cooperation strategies to
be used by multiple predator agents to pur-
sue and capture a prey agent on a grid—world.
This domain has been extensively studied in
Distributed Artificial Intelligence (DAI) as
an easy—to—describe but difficult—to—solve co-
operation problem. The evolved programs
from our systems are competitive with manu-
ally derived greedy algorithms. In particu-
lar the STGP paradigm evolved strategies in
which the predators were able to achieve their
goal without explicitly sensing the location of
other predators or communicating with other
predators. This is an improvement over pre-
vious research in this area. The results of
our experiments indicate that STGP is able
to evolve programs that perform significantly
better than GP evolved programs. In addi-
tion, the programs generated by STGP were
easier to understand.

1 Introduction

A problem with using Genetic Programming (GP)
to solve large and complex problems is the con-
siderable size of the state—space to be searched for
generating good solutions. Even for small ter-

minal and function sets and tree depths, search

This is a preprint of the paper in the Proceedings of
the Swxth International Conference on Genetic Algorithms,
1995.

spaces of the order of 103° — 10*° are not uncom-
mon [Montana 1994]. To address this pressing prob-
lem, researchers have been investigating various means
to reduce the GP state—space size for complex prob-
lems. Notable work in this area include Auto-
matically Defined Functions (ADF) [Kinnear 1994b,
Koza 1994], module acquisition (MA) [Angeline 1994,
Kinnear 1994b], and Strongly Typed Genetic Pro-
gramming (STGP) [Montana 1994]. The first two
methods utilize function decomposition to reduce the
state—space. The STGP method utilizes structuring of
the GP S-expression to reduce the state—space.

We strongly agree with Montana’s claim of the relat-
ive advantage of STGP over GP for complex prob-
lems [Montana 1994]. Besides the benefit of reducing
the state—space, we are interested in whether the struc-
ture imposed by strong typing will be useful for ana-
lyzing the output of the evolved program. A com-
mon problem in Al research is deciphering the com-
plex rules derived by the learning system. We believe
that solutions produced by STGPs are in general more
comprehensible than solutions produced by GPs.

In this paper, we further investigate the relative mer-
its of STGP over GP by applying these methods on
a difficult agent coordination problem. To our know-
ledge, this is the first application of the GP paradigm
to the field of Distributed Artificial Intelligence (DAT).
Our goal 1s to generate programs for the cooperation of
autonomous agents in a simulated environment. The
identification, design, and implementation of strategies
for cooperation is a central research issue in the field of
DAI. Researchers are especially interested in domains
where multiple, autonomous agents share goals and
resources, and use mutually acceptable work—sharing
strategies to accomplish common goals. Developing
cooperation strategies to share the work load is an ex-
tremely difficult problem, especially when the envir-
onment in which the agents are working is uncertain
or not completely understood. Current techniques in

developing cooperation strategies are mostly done off-
line using extensive domain knowledge to design from
scratch the most appropriate cooperation strategy. It
18 nearly impossible to identify or even prove the exist-
ence of the best cooperation strategy. In most cases a
cooperation strategy is chosen if it is reasonably good.

In [Haynes 1994], we presented a new approach to de-
veloping cooperation strategies for multi-agent prob-
lem solving situations. Our approach differs from most
of the existing techniques for constructing cooperation
strategies in two ways:

e Strategies for cooperation are incrementally con-
structed by repeatedly solving problems in the do-
main, i.e., they are constructed on-line.

e We rely on an automated method of strategy for-
mulation and modification, that depends very little
on domain details and human expertise, and more
on problem solving performance on randomly gen-
erated problems in the domain.

The approach proposed in [Haynes 1994] for devel-
oping cooperation strategies for multi-agent problems
is completely domain independent, and uses the GP
strategy. To use the GP approach for evolving co-
operation strategies, it is necessary to find an encod-
ing of strategies depicted as S—expressions and choose
an evaluation criterion for a strategy corresponding to
an arbitrary S—expression. Populations of these struc-
tures are evaluated by a domain—specific evaluation
criterion to develop, through repeated problem solv-
ing, increasingly efficient cooperation strategies. The
mapping of various strategies to S—expressions and vice
versa can be accomplished by a set of functions and ter-
minals representing the fundamental actions in the do-
main of the application. Evaluations of the structures
can be accomplished by allowing the agents to execute
the particular strategies in the application domain. We
can then measure their efficiency and effectiveness by
some criteria relevant to the domain.

We have used the predator—prey pursuit game to test
our hypothesis that useful cooperation strategies can
be evolved using the STGP paradigm for non—trivial
problems. This domain involves multiple predator
agents trying to capture a prey agent by surround-
ing it. The predator—prey problem has been widely
used to test new coordination schemes [Gasser 1989,
Stephens 1989, Stephens 1990, Korf 1992]. The prob-
lem is easy to describe, but extremely difficult to solve;
the performance of even the best manually generated
coordination strategies is less than satisfactory. We
will show that STGP evolved coordination strategies

perform competitively with the best available manually
generated strategies. Our experiments demonstrate the
relative advantage of using STGP over GP.

2 Strongly Typed Genetic
Programming

Genetic programming (GP) is a powerful technique for
automatically generating computer programs to per-
form a wide variety of tasks [Koza 1992]. The GP
uses the traditional genetic algorithm (GA) operators
for selection and recombination of individuals from one
population of structures to form another population.
The representation language used in GPs are computer
programs represented as Lisp S—expressions in a parse
tree. Recently GP has attracted a tremendous number
of researchers because of the wide range of applicability
of this paradigm, and the easily interpretable form of
the solutions [Kinnear 1994a, Koza 1992, Koza 1994].
We assume the reader is familiar with the fundamentals

of GAs and GPs.

In GP the user must specify all of the functions, vari-
ables and constants that can be used as nodes in a
parse tree. Functions, variables and constants which
require no arguments become the leaves of the parse
trees and are called terminals. Functions which re-
quire arguments form the branches of the parse trees,
and are called non—terminals. The set of all termin-
als is called the terminal set, and the set of all non—
terminals is called the non—terminal set. Note the term
non-terminal is what Koza [Koza 1992] calls a func-
tion.

One serious constraint on the user—defined terminals
and non—terminals i1s called closure. Closure means
that all of the non—terminals must accept arguments
of a single data type (i.e. a float) and return val-
ues of the same data type. This means that all non—
terminals return values that can be used as argu-
ments for any other non—terminal. Hence, closure
means any element can be a child node in a parse
tree for any other element without having conflicting
data types. Montana [Montana 1994] claims that clos-
ure is a serious limitation to genetic programming.
Koza [Koza 1992] describes a way to relax the clos-
ure constraint using the concept of constrained syntax
structures. Koza used tree generation routines which
only generated legal trees. He also used operations on
the parse trees which maintain legal syntactic struc-
tures. This is one of the fundamental concepts of

STGP.

In STGP, variables, constants, arguments, and re-
turned values can be of any type. The only restriction

is that the data type for each element be specified be-
forehand. This causes the initialization process and the
various genetic operations to only construct syntactic-
ally correct trees. One of the key concepts for STGP
are generic functions, which is a mechanism for defining
a class of functions, and defining generic data types for
these functions. Generic functions eliminate the need
to specify multiple functions which perform the same
operation on different types. For example, one can
specify a single generic function, VECTOR-ADD, that
can handle vectors of different dimensions, instead of
multiple functions to accommodate vectors for each di-
mension. Specifying a set of arguments types, and the
resulting return type, for a generic function is called
wnstantiating the generic function.

The STGP search space is the set of all legal parse
trees. That is, all of the functions have the correct
number of parameters of the correct type. Generally
the parse tree is limited to some maximum depth. The
maximum depth limit on a parse tree is one of the
GP parameters. This keeps the search space finite and
manageable. It also prevents trees from growing to an
extremely large size.

Montana [Montana 1994] presented several different
examples illustrating these concepts. He used STGP
in solving a wide variety of moderately complex prob-
lems involving multiple data types. He showed in his
examples that STGP was very effective in obtaining
solutions to his problems compared to GP. Montana
lists three advantages of STGP and generic functions:

1. Generic data types eliminate operations which are
legal for some sets of data used to evaluate per-
formance, but which are illegal for other possible
sets of data.

2. When generic data types are used, the functions
that are learned during the genetic programming
process are generic functions.

3. STGP eliminates certain combinations of opera-
tions. Hence 1t necessarily reduces the size of the
search space. In many cases the reduction is a
significant factor.

In one of Montana’s examples [Montana 1994], he
presents a problem with a terminal set of size two, and
a non—terminal set of size 10. When the maximum tree
depth was restricted to five, the size of the search space
for the STGP implementation was 10°, while the size
of the GP search space was 10'°. In the same example
when the maximum tree depth was increased to six,

the size of the search space for the STGP implement- 3

ation was 10'!, while the size of the GP search space
was 1038,

3 The Pursuit Problem

The original version of the predator—prey pursuit prob-
lem was introduced by Benda, et al. [Benda 1985] and
consisted of four blue (predator) agents trying to cap-
ture a red (prey) agent by surrounding it from four
directions on a grid-world. This problem is a com-
mon domain used in Distributed Artificial Intelligence
research to evaluate techniques for developing cooper-
ation strategies. In the original version of the problem,
agent movements were limited to one either horizontal
or vertical step per time unit. The movement of the
prey agent was random. No two agents (prey or pred-
ator) were allowed to occupy the same location. The
goal of this problem was to show the effectiveness of
nine organizational structures, with varying degrees of
agent cooperation and control, on the efficiency with
which the predator agents could capture the prey.

Gasser et al. [Gasser 1989] approached this problem by
allowing the predators to occupy and maintain what is
called a Lieb configuration while homing in on the prey.
In a Lieb configuration each predator occupies a differ-
ent quadrant, where a quadrant is defined by diagonals
intersecting at the current location of the prey. This
study did not provide any experimental results. Hence
their research is difficult to compare with other work
on this problem.

Korf [Korf 1992] claims in his research that a discret-
ization of the continuous world that allows only hori-
zontal and vertical movements is a poor approximation.
He calls this the orthogonal game. Korf developed sev-
eral greedy solutions to problems where eight predat-
ors are allowed to move orthogonally and diagonally.
He calls this the diagonal game. He also developed
solutions for a game in which six predators move on
a hexagonal grid rather than a rectangular grid. He
calls this the hexagonal game. In Korf’s solutions, each
agent chooses a step that brings it nearest to the pred-
ator. A mazr norm distance metric (maximum of
and y distance between two locations) is used to solve
all three types of games. The prey was captured in
each of one thousand random configurations in these
games. It should be noted that these games did not
have a time limit, and once a prey was captured, it
could not escape the predators.

Korf concludes that the maz norm distance metric is
suitable for the diagonal and the hexagonal game, but
1s ineffective for the orthogonal game. To improve the
efficiency of capture (i.e., the steps taken for a capture),

he adds a term to the evaluation of moves that requires
predators to move away from each other before conver-
ging on the prey. Hence, the predators will encircle the
prey and thus eliminate any escape routes. This meas-
ure 1is successful in the diagonal and hexagonal games,
but makes the orthogonal game unsolvable. Korf re-
places the traditional randomly moving prey with a
prey that chooses a move that places it at the max-
imum distance from the nearest predator. Any ties
are broken randomly. He claims this addition to the
prey movements makes the problem considerably more
difficult. It is our conjecture that the real difficulty is
because in his experiments the predators and prey take
turns moving. In all of our experiments the prey and
predator agents move simultaneously.

4 Cooperation strategies

In our experiments, the initial configuration consisted
of the prey in the center of the grid and the predators
placed in random non—overlapping positions. The solu-
tions we obtained are used to solve problems of other
sizes, specifically grids of size 30 by 30, 40 by 40 and
50 by 50. Representative results are presented. All
agents choose their action simultaneously. The envir-
onment is accordingly updated and the agents choose
their next action based on the new state. Conflict res-
olution will be necessary since we do not allow two
agents to co—occupy a position. If two agents try to
move into the same location simultaneously, they are
“bumped back” to their prior positions. One pred-
ator, however, can push another predator (but not the
prey) if the latter did not move. The prey moves away
from the nearest predator. However, 10% of the time
the prey does not move. This effectively makes the
predators travel faster than the prey. The grid is tor-
oidal in nature, and the orthogonal form of the game is
used. A predator can see the prey, but not other pred-
ators. Furthermore the predators do not possess any
explicit communication skills, i.e. the predators cannot
communicate to resolve conflicts or negotiate a capture
strategy. We performed each of our experiments using

both GP and STGP.

The STGP and GP algorithms are used to evolve a
program to be used by a predator to choose its moves.
The same program is used by all the predators. Thus,
each program in the population represents a strategy
for implicit cooperation to capture the prey. Further
discussion of the evolution of these programs and com-

parisons of STGP versus GP is presented in Section 5. 4

4.1 Encoding of Cooperation Strategies

The terminal and function sets for our STGP imple-
mentation of the pursuit problem are shown in Table 1.
In our domain, the root node of all parse trees is en-
forced to be of type Tack, which returns the number
corresponding to one of the five choices the prey and
predators can make: (North, East, West, South and
Here). Notice the required types for each of the ter-
minals, and the required arguments and return types
for each function in the function set. Clearly, this is a
STGP implementation for the pursuit problem.

4.2 Evaluation of Cooperation Strategies

To evolve cooperation strategies using GPs it is neces-
sary to rate the effectiveness of cooperation strategies
represented as programs or S—expressions. We evalu-
ated each strategy by giving it & randomly generated
predator placements. For each scenario, the strategy
(program) was run for 100 time steps. This results in
one simulation. A time step is defined as a move made
by each of the agents simultaneously. The percentage
of capture was used as a measure of fitness when com-
paring several strategies over the same scenario. Since
the initial population of strategies are randomly gener-
ated, we expected that very few strategies would result
in a capture after only 100 moves. Hence, we used ad-
ditional terms in the fitness function to differentially
evaluate the non—capture strategies. We designed our
evaluation function for a given strategy to contain the
following terms:

e After each move is made according to the
strategy, the fitness of the program representing
the strategy is incremented by (Grid width) /
(Distance of predator from prey), for each pred-
ator. Higher fitness values result from strategies
that bring the predators closer to the prey, and
keep them near the prey. This term favors pro-
grams producing a capture in the least number of
moves.

e When a simulation ends, for each predator oc-
cupying a location adjacent to the prey, a num-
ber equal to (# of moves allowed * grid width) is
added to the fitness of the program. This term is
used to favor situations where one or more pred-
ators surround the prey.

e If a simulation ends in a capture position, an
additional reward of (4 % # of moves allowed
grid width) is added to the fitness of the program.
This term strongly biases the evolutionary search

| Terminal | Type | Purpose || Function | Return | Arguments | Purpose/Return |
B Boolean | TRUE CellOf Cell Agent A Get the cell coord
or FALSE. and Tack B of A in B.
Bi Agent The current IfThenElse | Type of B | Boolean A, If A, then do B, else
predator. and C Generic B do C. (B and C must
and C have the same type.)
Prey Agent The prey. < Boolean Length A If A < B, then
and Length B | TRUE else FALSE.
T Tack Random Tack in MD Length Cell A Return the Manhattan
the range of Here and Cell B distance between
to North to West. A and B.

Table 1: Terminal and Function Sets

toward programs that enable predators to main-
tain their positions when they capture the prey.

In our experiments, the distance between agents is
measured by the Manhattan distance (sum of x and
y offsets) between their locations.

In order to generate general solutions, (i.e., solutions
that are not dependent on initial predator—prey con-
figuration), the same k training cases were run for
each member of the population per generation. The
fitness measure becomes an average of the training
cases. Note these training cases can be either the same
throughout all generations or randomly generated for
each generation.

5 Experimental Results

The STGP system, called GPengine, used in this re-
search is an extension of the package developed in
[Haynes 1995] and is written in C. Furthermore, it can
be used as either a STGP or GP system depending on
a runtime switch. A graphical reporting system was
created for X-Windows using the Tcl and Tk toolkit
with the Blt extension; this system was a modification
of the work by Martin [Martin 1994].

The basic setup for the simulations is described in Sec-
tion 3. Programs were evolved for grid sizes ranging
from 10 by 10 to 50 by 50, with the prey either moving
randomly (Random) or moving away from the nearest
predator (MAFNP). In each generation k test cases
were randomly generated, and each program was eval-
uated on each of the test cases. All fitness data presen-
ted 1s an average over the k test cases. Note that the
fitness function is different per generation.

5.1 Untyped GP

Our results for the GP experiments is exemplified by
the curve shown in Figure 1(a). Notice that there is no

IFTE(<(CellOf(Bi,
<(CellOf(W, Bi),
CellOf(Bi, Prey))),
CellOf(Prey, W)),
IFTE(<(CellOf(Bi, Prey),
CellOf (Prey, T)),
IFTE(IFTE(CellOf(Prey, T),
Sa
MD(Prey, F)),
Sa
Cell0f (Prey,
CellOf(Prey, T))),
W),
N)

Program 1: The best program generated by GP.

steady increase of fitness that indicates that learning
18 occurring.

The only good GP program resulted from a 20 by 20
grid with a randomly moving prey. The results for the
experiment which produced the program is shown in
Figure 1(b). The curve follows the pattern for good
fitness curves which is indicative of learning. A good
curve, in general, first exhibits a steady build up, then
a sharp jump as a good building block is discovered,
and finally reaches a plateau, which indicates the dis-
covery of a local minimum /maximum. This process is
repeated until either the global minimum /maximum is
found or the GP terminates.

Note that the number of generations has been extended
to 2000 in Figure 1(b) compared to 500 in Figure 1(a).
This extension was prompted by promising results in
the early generations. Generation 1389 had the best
program (see Program 1) which contains 39 nodes and
has a fitness of 29850 out of a maximum possible fit-

ness of 32000.

50000

5500 T 30000
45000 -

S000 - 25000 | 40000 -

et 35000

4 1
i oo ? 9 20000 {
000 -
4000

15000 |- 25000 -

Best Fitness
Best Fitness
Best Fitness

3500 f § 20000 §
10000 |

3000 4] 4l 15000 |

St [l 5000 toooo - ¢
2500 1| #

5000 (8

2000 L L L L L L L L L 0 L L L L L L L L L

0 50 100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 L L L L L

Generation 0 100 200 300 400 500 600
Generation

Generation

@ (b) ©

Figure 1: Example fitness curves for randomly moving prey systems: (a) Typical untyped (GP), (b) Best untyped

(GP), and (c) Best typed (STGP).

5.2 Typed GP

A typical result for a STGP run using a 30 by 30 grid
with a randomly moving prey is shown in Figure 1(c).
This fitness curve indicates that good building blocks
are being identified. This fitness curve learns faster
than the GP results shown in Figure 1(b). Indeed all of
our results for the STGP runs exhibited this property
of learning.

As expected, the initial randomly generated programs
were extremely poor strategies. The STGP, however,
was successful in evolving effective strategies over the
run as evidenced by the improvement in average and
maximum fitness of structures in successive popula-
tions (see Figure 1(c)). Fluctuations in the fitness
occur over the entire run because the random initial
configurations change between successive generations.
Generation 412 had the best program (see Program 2)
which contains 61 nodes and has a fitness of 46660 out
of a maximum possible fitness of 48000.

5.3 Analysis

The moves suggested by the STGP program (strategy)
for various relative positions of a predator with re-
spect to the prey are graphically represented in Fig-
ure 2(a). Figure 2(b) shows the strategy for a de-
terministic Korf’s max norm, a modification of the al-
gorithm presented in [Korf 1992]. Tt is interesting to
note how the agents converge on the prey using the
policy. More significantly, the STGP solution is stable,
in that once the prey is captured, no predator makes a
move that allows the prey to escape. The STGP pro-
duces a very plausible strategy using very little domain

IFTE(<(IFTE(T,
MD(CellOf(Prey, H),
CellOf(Bi,E)),
MD(CellOf(Prey, N),
CellOf(Bi, H))),
MD(CellOf(Prey, N), CellOf(Bi, W))),
IFTE(<(MD(Cell0f(Bi, I,
CellOf (Prey, H)),
MD(CellOf(Bi, N),
CellOf (Prey, W))),
N’
E),
IFTE(<(MD(CellOf(Prey, N),
Cell0f(Bi, I)),
MD(CellOf(Bi, E),
CellOf (Prey, W))),
wa
S))
Program 2: The best program generated by STGP.

information. Furthermore, this approach does not rely
on any communication between agents. Predators are
only assumed to be cognizant of the location of the
prey and not the location of the other predators.

The moves suggested by the GP program are not
shown due to the difficulty in the interpretation the
program. The moves of the STGP program are only
dependent on the relative relationship between a pred-
ator and the prey. The moves of the GP program are
dependent on the actual relationship between both a
predator and the prey and the fourth predator and the
prey. In our description of the predator—prey domain,
we stated that predators could not see each other. The
closure property allowed the GP system to violate this
rule. Also the STGP program’s moves are independ-
ent of which particular predator is executing the pro-
gram, while the GP program’s moves are dependent on

NNRNNNNNRNE R R R e e
NG RENES o 6N abNEbooNouswnEO

H
N

SR R R R [[(Y (<<= <<= <= [<]<]<]<]<[<]<]o

T(A[A[A[a[A (AR [A[R[A[a[R (AR [=[=[=[=[=[=[=[=[=[=[<[<[<[<["]2

T(A[A[A[a (AR [R[R[R[R[a[AR [=[=[=[=[=[=[=[=[<[=[<[<[< <[]

T(A[A[A[a[A[A[R[A[R[R[A[R (AR [=[=[=][=[=[=[=[=[<[=]<[<]<][<]=
T(A[A[A[a[R[A[R[A[R[R[A[R (AR [=[=[=][=[=[=[<[=[<[=]<[<]<]<]=

(R [A (R [[h[h (AR [R[h[A[A[h[A]|=[=[=[=][=[=[=[<]=[<[=]<[<]<[<]%
TR [h[R[h[R[R[R[R[R[R[M[a[R]|=[<[<[=][<[<[<[=<[<[<[=<][<[=<]<]<

NN
B B

YIYYYIYY[YY[YY[Y[Y[Y[Y]Y[Y[Y[Y[Y[Y[Y Y[V [Y [V Y[[V]["]~ |o
S Y Y Y Y Y Y Y YYYYYYYYY[Y[Y[Y[Y[V [V [~ |

SRR [[R R (AR [A[R[R[R[R[&[R[A[R[R[A[R[a (R [0[R[R[R[R[2[=]" 0

Figure 2: Example pursuit paths found by (a) STGP and (b) maz norm.

a predator.!

The best GP program could be due to the random
configuration of the predators rather than the result of
a good program. Notice the three jumps in fitness in
the generation range of 1200 to 1400 in Figure 1(b).
The best STGP program is due to a good program, as
evidenced by consistent scoring in Figure 1(c).

The best GP and STGP programs generated were
tested against data from Stephens [Stephens 1989] and
1000 random test cases of our own. The averaged
results are shown in Table 2. Four human derived
algorithms, discussed in detail in [Haynes 1994], are
also shown in Table 2: Korf’s mazr norm (MN),
Korf’s Manhattan distance (MD), Korf’s original max
norm (MNO), and Korf’s original Manhattan distance
(MDO). The maz norm algorithms determine the best
move to make based on the diagonal distance between
a predator and the prey. The Manhattan distance al-
gorithms determine the best move to make based on
the sum of the differences of the x and y coordinates of
a predator and the prey. The predators in the original
algorithms take turns moving, and thus have no con-
flict for cells. The predators in the modified algorithms
all follow the rules outlined in Section 3.

Two lines of data are shown for both GP and MNO in
Table 2. The first line represents the number of cap-
tures that hold to the end of a simulation. The second
line represents shadow captures, which are situations
in which the predators capture a prey, but allow it to
escape. Results show that the GP program is weaker
than the other algorithms in that it did not learn to

'We have performed further experiments in which the
STGP predators are allowed to interact with each other.
Over time, this capability was bred out of the best of gen-
eration program.

7

keep the prey captured in all cases.

The relevant results extracted from Table 2 are:

e The STGP program significantly outperforms the
GP program in all cases.

e While one manually derived algorithm, MD, con-
sistently outperforms the STGP program, the
STGP program was able to outperform all of the
other greedy algorithms.

e The GP program did outperform some of the
greedy algorithms.

e The GP program did not generalize outside of the
domain that created it. This program was gener-
ated from a system that had a prey which moved
randomly and also at the same time as the predat-
ors. The only significant capture rates for the GP
program occur in this scenario.

There are two points that stand out when comparing
GP versus STGP programs:

1. A good GP program takes longer to generate than
a good STGP program.

2. The best STGP program had a higher capture rate
than the best GP program.

Table 3 shows the state—space size for the traditional
GP (untyped) implementation, and the STGP (typed)
implementation of the pursuit problem. Notice for vari-
ous maximum tree depth restrictions that the STGP
has a significantly smaller state—space size. We believe
this is probably the single most important reason for
the observed performance difference.

Stephen’s 30 test cases 1000 random test cases
MAFNP Prey Random Prey MAFNP Prey [Random Prey
Prey first | Synch. [Prey first] Synch. Prey first | Synch. [Prey first] Synch.
GP | 0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 1.85(1.05) 0.00(0.00) 7.00(1.06) 2.80(1.48) 9.28(13.03)
0.00(0.00) | 0.00(0.00) | 0.00(0.00) | 1.85(1.05) 0.00(0.00) 7.00(1.06) 2.80(1.48) 9.31(13.30)
STGP | 3.04(1.56) | 5.04(2.11) | 3.69(1.65) | 9.50(2.25) 100.00(9.61) | 216.00(8.12) | 111.40(3.51) | 340.20(14.69)
MN | 069(062) | 1.46(1.24) | 1.92(1.16) | 10.31(3.13) 28 70(5.36) 56 50(6.84) 63 00(8.11) 374 40(11.97)
MD | 850(2.59) | 5.31(2.41) | 5.35(1.83) | 13.35(2.37) || 337.30(13.58) | 222.90(12.33) | 193.10(11.81) | 463.40(19.727)
MNO | 0.00(0.00) | 0.00(0.00) | 0.08(0.27) | 0.08(0.27) 0.10(0.32) 0.10(0.32) 1.80(0.92) 2.60(0.97)
0.39(0.64) | 0.58(0.70) | 7.19(2.37) | 7.23(2.37) 14.90(4.31) 15.00(5.29) | 273.20(16.79) | 270.80(17.76)
MDO | 2.35(1.33) | 2.27(1.59) | 1.15(1.01) | 1.04(1.15) 96 00(11.16) | 96.70(11.89) 56.7(3.86) 57.30(7.73)

Table 2: Average number of captures over different runs (standard deviations are presented in parentheses).

Maximum | Traditional GP STGP
Level (untyped) (Typed)
0 9 5
1 972 50
2 9.5 x 10% 30250
3 8.5 x 10%¢ 9.3 x 101!
4 6.1 x 10%° 8.9 x 10*?
5 2.3 x 10%*? 8.6 x 10°?

Table 3: State-Space Sizes for Various Configurations
for the Pursuit Problem

In addition to reducing the state-space size, the STGP
implementation generates programs which are easier
for humans to understand. Our experimental setup
explicitly excluded predators from sensing each others
positions. The GP system found a loophole in that
closure allowed the CellOf function to examine other
predators. This occurred in Program 1 where each
predator examined the relationship between itself and
predator 4. This loophole complicates the process for
determining the rules employed for movement.

6 Conclusions

We used Genetic Programming to evolve cooperation
strategies for predators to capture a prey moving in a
grid—-world. Results from both the 30 test cases used in
a previous study [Stephens 1989], and on an additional
1000 randomly generated test cases show that the solu-
tion evolved by the STGP implementation is very com-
petitive with manually derived algorithms, and loses
only to the MD algorithm. Furthermore, though the
GP solution is significantly inferior to the STGP solu-
tion, 1t will occasionally fare better than the manually
derived algorithms. The capture rates of all algorithms
are still low, which indicates there is still a lot of work
to be done in this domain.

We have shown that the STGP paradigm can be effect-
ively used to generate complex cooperation strategies
without being provided any deep domain knowledge.

The evolved strategies fared extremely well compared
to some of the best manually constructed strategies.
We believe this approach to developing coordination
schemes holds further promise for domains in which a
human designer has much less understanding of what
a good coordination strategy should be.

7 Future Work

Have we packaged too much into the MD function? In
constructing a GP system there are two efforts which
are the most time consuming: deriving the function and
terminal sets and constructing the fitness evaluation
function. A concern in constructing the function set
18 how much functionality should be made available to
the system? If there is not enough functionality, then
a solution can not be found, and if there is too much
functionality, then a solution is trivial.

In the STGP system the solution appears to be trivial,
while in the GP system the solution is hard to find. If
we replace the MD function with its constituent parts,
will the STGP system be able to still find valid solu-
tions and will 1t still fare better than the GP system?

Is the advantage of the STGP system due solely to the
reduction of the state—space? If we were to increase
the state—space of the STGP system to be equal or lar-
ger than the GP system then would the STGP system
still perform better than the GP system? Simple cal-
culations show that if we allow the STGP programs to
grow two more depth levels, then its state—space will
be significantly larger than the GP system.

In this paper we have utilized the significantly smaller
search space for the STGP system over the GP system.
We believe that this huge reduction in the search space
allows the STGP system to evolve considerably better
solutions. An important question to answer is whether
the severely constrained search space for the STGP
prevents it from generating optimal or near-optimal
solutions in certain problems. This can happen if the
reduced search space does not contain the optimal solu-
tion, or it eliminates portions of the search space that

contain good building blocks required to construct an
optimal or near-optimal solution.

We believe the above scenario does not arise in the
problems discussed in the current paper. It is also not
immediately obvious if such a scenario can occur in
any problem domain. We would like to investigate this
problem further. Our goal is to construct an artificial
problem to show that a STGP system generated from
a given GP system for that problem has a search space
that does not contain the optimal solution.

Acknowledgments

This research was partially supported by OCAST
Grant AR2-004 and Sun Microsystems, Inc.

References

[Angeline 1994] Peter J. Angeline. Genetic programming
and emergent intelligence. In Kenneth E. Kinnear,
Jr., editor, Advances in Genetic Programming, pages

75-97. MIT Press, Cambridge, MA, 1994.

[Benda 1985] M. Benda, V. Jagannathan, and R. Dodhi-
awalla. On optimal cooperation of knowledge sources.
Technical Report BCS-G2010-28, Boeing Al Center,
Boeing Computer Services, Bellevue, WA, August
1985.

[Gasser 1989] Les Gasser, Nicolas Rouquette, Randall W.
Hill, and John Lieb. Representing and using organ-
izational knowledge in DAI systems. In Les Gasser
and Michael N. Huhns, editors, Distributed Artificial
Intelligence, volume 2 of Research Notes in Artificial
Intelligence, pages 55-78. Pitman, 1989.

[Haynes 1994] Thomas Haynes, Roger Wainwright, and
Sandip Sen. Evolving cooperation strategies. Tech-
nical Report No. UTULSA-MCS-94-10, The Uni-
versity of Tulsa, December 16, 1994.

[Haynes 1995] Thomas D. Haynes and Roger L. Wain-
wright. A simulation of adaptive agents in a hostile
environment. In Proceedings of the 1995 ACM Sym-
posium on Applied Computing, pages 318-323. ACM
Press, 1995.

[Kinnear 1994a] Kenneth E. Kinnear, Jr., editor. Advances
in Genetic Programming. MIT Press, Cambridge,
MA, 1994.

[Kinnear 1994b] Kenneth E. Kinnear, Jr. Alternatives in
automatic function definition: A comparision of per-
formance. In Kenneth E. Kinnear, Jr., editor, Ad-
vances in Genetic Programming, pages 119-141. MIT
Press, Cambridge, MA, 1994.

[Korf 1992] Richard E. Korf. A simple solution to pursuit
games. In Working Papers of the 11th International
Workshop on Distributed Artificial Intelligence, pages
183-194, February 1992.

[Koza 1992] John R. Koza. Genetic Programming, On the
Programming of Computers by Means of Natural Se-
lection. MIT Press, 1992.

[Koza 1994] John R. Koza. Genetic Programming II,
Automatic Discovery of Reusable Programs. MIT
Press, 1994.

[Martin 1994] Martin C. Martin. GP FTP

Archives, 1994.

graphs.blt.

[Montana 1994] David J. Montana. Strongly typed genetic
programming. Technical Report 7866, Bolt Beranek
and Newman, Inc., March 25, 1994.

[Stephens 1989] Larry M. Stephens and Matthias B. Merx.
Agent organization as an effector of dai system per-
formance. In Working Papers of the 9th Interna-
tional Workshop on Distributed Artificial Intelligence,
September 1989.

[Stephens 1990] Larry M. Stephens and Matthias B. Merx.
The effect of agent control strategy on the performance
of a DAI pursuit problem. In Proceedings of the 1990
Distributed AT Workshop, October 1990.

